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Abstract—Tensor fields are useful for modeling structure 
of biological tissues. The challenge to measure tensor 
fields involves acquiring sufficient data of scalar 
measurements that are physically achievable and to 
reconstruct tensors from as few projections as possible for 
efficient applications in medical imaging. In this paper, we 
present a filtered back-projection algorithm for the 
reconstruction of a symmetric second rank tensor field 
from directional X-ray projections about three axes. The 
tensor field is decomposed into a solenoidal and 
irrotational component each comprised of three unknowns. 
Using the Fourier projection theorem, a filtered back-
projection algorithm is derived for the reconstruction of the 
solenoidal and irrotational components from projections 
acquired around three axes. A simple illustrative phantom 
consisting of two spherical shells and a 3D digital cardiac 
diffusion image obtained from diffusion tensor MRI of an 
excised human heart are used to simulate directional X-ray 
projections. The simulations validated the mathematical 
derivations and demonstrated reasonable noise properties 
of the algorithm. The decomposition of the tensor field into 
solenoidal and irrotational components provides insight 
into the development of algorithms for the reconstruction 
of tensor fields with sufficient samples in terms of the type 
of directional projections and the necessary orbits for 
acquisition of the projections of the tensor field.   

 
Index Terms— Filtered back-projection algorithm, 

solenoidal and irrotational components, tensor 
tomography, directional X-ray projections.  

I. INTRODUCTION 

ENSOR tomography has found important applications in the 

physical sciences [1, 2], mathematics [3], and medicine [4]. 

Here we consider the tensor tomography problem as the 

reconstruction of symmetric second rank tensor fields. The 

focus of this work is to develop acquisition schemes and filtered 

back-projection algorithms for the three-dimensional 

reconstruction of the 6-unknown tensor elements.  

In medicine one application of tensors is to model biological 

structure by using X-ray imaging of small angle scatter to 

characterize in vivo fiber structure of lung [5], bone [6], and 

breast [7]. The small angle scattering that is captured by X-ray 
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dark-field imaging is orientation dependent [8-15], and as such 

is not captured in regular 3D X-ray tomography. Thus, in many 

studies of X-ray dark-field imaging, the question arises as to 

whether sufficient data is obtained to uniquely reconstruct the 

tensor models used to represent the small angle scatter. Another 

important medical application is using tensors to model the 

helical fiber structure of cardiac muscle [16] using MRI 

diffusion imaging [17, 18]. Understanding the 3D fiber 

structure of the heart is important for modeling the mechanical 

and electrical properties; and changes in the fiber configuration 

may be of significant importance to understand the remodeling 

in the progression to heart failure [19] and after myocardial 

infarction [20]. Currently, most MR diffusion tensor imaging 

(DTI) studies require a very large number of signal 

measurements; whereas the focus here is to develop tensor 

tomographic techniques that might provide faster and more 

accurate data acquisitions. 

The tensor tomographic problem is an extension of the vector 

tomographic problem [21-36] and draws on much of the work 

in the reconstruction of vector fields (first rank tensor fields) 

[31, 35]; in particular, the decomposition of the tensor field into 

solenoidal and irrotational components [3, 37-40] and the 

extension of the Fourier projection theorem from scalar and 

vector fields [32, 35] to tensor fields [37-40]. This 

decomposition provides a formulation to analyze data 

acquisition schemes and reconstruction algorithms from the 

mathematical construction of projections that might simplify 

the data acquisition yet provide accurate and precise 

reconstruction results.  

The present work was stimulated by papers [41-43] where it 

was shown that rotations about at least three orthogonal axes 

are necessary to reconstruct 3D symmetric second rank tensor 

fields. They developed explicit plane-by-plane filtered back-

projection reconstruction algorithms using six sets of 

projections obtained by rotating about three orthogonal axes: 

three sets of scalar projection measurements for diagonal 

components, and three for off-diagonal components. It has also 

been shown for slice-by-slice vector field tomography in [33, 

34, 36] that three perpendicular axes are sufficient for a full 

T 
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recovery. Our approach is to separate the tensor field into 

solenoidal and irrotational components [37-40, 44], so that one 

set of three directional measurements around three axes 

reconstructs the solenoidal component of the tensor field; and 

the reconstructed solenoidal component along with a different 

set of three directional measurements about the same axes 

reconstructs the irrotational component.  

In the following sections, we first present definitions and 

notations used in our work including the formulation for the 

decomposition of a symmetric second rank tensor field into 

solenoidal and irrotational components. From this 

decomposition we derive a method for the reconstruction of the 

tensor field from measurements around three axes that involves 

a reconstruction of the solenoidal component, and another 

reconstruction of the irrotational component. In the methods we 

present two phantoms for evaluating the proposed algorithm. 

We describe how the scalar projections of the tensor fields are 

formed. We also present metrics used to evaluate the 

reconstructions and compare results with different noise levels. 

This is followed by a discussion of the advantages of tensor 

tomography.   

II. DEFINITION AND NOTATIONS 

In our work we use the Fourier projection theorem to show 

that the Fourier transform of the X-ray projections is related to 

the Fourier transform of the solenoidal and irrotational 

components of the second rank symmetric tensor field. This 

provides an important result proving that only a single set of 

directional X-ray projections around three orthogonal axes can 

reconstruct the solenoidal component. 

A. Definition of 3D second rank tensor fields 

For a point 𝑥 = (𝑥, 𝑦, 𝑧)𝑇 in ℜ3, the 3D second rank tensor 

𝑇(𝑥) is denoted by its nine real elements which are rapidly 

decreasing C∞ functions: 

𝑇(𝑥) = [

𝑡𝑥𝑥 𝑡𝑥𝑦 𝑡𝑥𝑧

𝑡𝑦𝑥 𝑡𝑦𝑦 𝑡𝑦𝑧

𝑡𝑧𝑥 𝑡𝑧𝑦 𝑡𝑧𝑧

] (𝑥). (1) 

As shown in Fig. 1(a), the tensor field can be illustrated as an 

ellipsoid [45], where the eigenvectors  𝜀1, 𝜀2, 𝜀3 of the tensor 

are the three unit vectors along the principal semi-axes of the 

ellipsoid, and the corresponding eigenvalues 𝜆1 , 𝜆2 , 𝜆3  are 

lengths of the principal semi-axes.  

B. Fourier projection theorem for X-ray projections 

In this section, we introduce the Fourier projection theorem 

for tensor fields, which is a straightforward extension of the 

Fourier slice theorem for vector fields [31, 32, 35].  

Similar to the X-ray transform for a scalar image, the 

directional X-ray transform of a tensor field is defined here as 

the line integral of the tensor field along a specific direction 𝜃 

for a zenith angle 𝜃 and an azimuth angle 𝜙 (Fig. 1): [40] 

𝑝𝜃

𝑎 𝑏
(𝑢, 𝑣) = ∫ 𝑎𝑇  𝑇 (𝑡𝜃 + 𝑢𝛼 + 𝑣𝛽) 𝑏 𝑑𝑡

∞

−∞

, (2) 

where the three orthogonal vectors are defined as  

𝜃 = (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜃)𝑇,  

𝛼 = (−𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜙, 0)𝑇 ,                      

𝛽 = (−𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙,−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙, 𝑠𝑖𝑛𝜃)𝑇.           (3) 

Equation (2) is the directional projection measurement defined 

by the 3D directional unit vectors 𝑎 and 𝑏. In this paper, we will 

use directional X-ray projections measured with  𝑎 = 𝑏 = 𝜃 

and  𝑎 = 𝑏 = 𝛽 , namely 𝑝
𝜃

𝜃 𝜃
 and 𝑝

𝜃

𝛽 𝛽
. The projection 𝑝

𝜃

𝜃 𝜃
 

indicates the integral in the direction 𝜃  (indicated by the 

subscript 𝜃) of the tensor field along the orange line presented 

in Fig. 1(b). The ellipsoids are a pictorial representation of the 

tensor at each voxel. In this case the contribution of each voxel 

to the line integral is the length of the orange line intersecting 

the ellipsoids. Whereas, for the projection 𝑝
𝜃

𝛽 𝛽
 presented in Fig. 

1(c), the contribution of each pixel to the line integral in the 

direction of 𝜃 is the length of the blue line in the direction 𝛽 

intersecting the ellipsoid.  

 

 

           
                            (a)                                                                        (b)                                                      (c)                                                  (d) 
 

Fig. 1. (a) A second rank tensor illustrated as an ellipsoid. The eigenvectors 𝜀1, 𝜀2, 𝜀3 of the tensor are the 3-unit vectors along the principal semi-axes of the 

ellipsoid, and the eigenvalues 𝜆1, 𝜆2, 𝜆3 are the lengths of the principal semi-axes. (Drawn based on Fig. 5 in [46]) (b) 𝑝𝜃

𝜃 𝜃
 and (c) 𝑝

𝜃

𝛽 𝛽
 are the integrals along 𝜃 

of the orange intersections (along 𝜃) and blue intersections (along 𝛽), respectively. Here the integration line goes through the centers of all ellipsoids. (Drawn based 

on Fig. 5 in [46] but modified to indicate the tensor measurements along 𝜃 and  𝛽.) (d) Illustrations of the three orthogonal vectors 𝜃, 𝛼, 𝛽, zenith angle 𝜃 and 

azimuth angle 𝜙. 

 



 IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022                      3 

  

Author’s version 

The Fourier transform of 𝑝𝜃

𝑎 𝑏
(𝑢, 𝑣) is defined as  

𝑝̃𝜃

𝑎 𝑏
(𝜈𝑢, 𝜈𝑣) = ∫ ∫ 𝑝𝜃

𝑎 𝑏
(𝑢, 𝑣)𝑒−2𝜋𝑖(𝑢𝜈𝑢+𝑣𝜈𝑣)

∞

−∞

∞

−∞

d𝑢d𝑣. (4) 

Substituting the definition in (2) into (4), one obtains 

𝑝̃𝜃

𝑎 𝑏
(𝜈𝑢, 𝜈𝑣) = 

∫ ∫ ∫ 𝑎𝑇 𝑇 (𝑡𝜃 + 𝑢𝛼 + 𝑣𝛽)𝑏 𝑑𝑡

∞

−∞

𝑒−2𝜋𝑖(𝑢𝜈𝑢+𝑣𝜈𝑣)

∞

−∞

∞

−∞

d𝑢d𝑣. 

With the change of variables 𝑥 = 𝑡𝜃 + 𝑢𝛼 + 𝑣𝛽 , it can be 

rewritten as  

𝑝̃
𝜃
𝑎 𝑏(𝜈𝑢, 𝜈𝑣) = ∫ ∫ ∫ 𝑎𝑇𝑇(𝑥)𝑏

∞

−∞

𝑒−2𝜋𝑖(𝑥𝛼𝜈𝑢+𝑥𝛽𝜈𝑣)

∞

−∞

∞

−∞

𝑑𝑥.  

This leads to the following formulation of the Fourier 

projection theorem for the projection in the direction of 𝜃: 

𝑝̃𝜃

𝑎 𝑏
(𝜈𝑢, 𝜈𝑣) = 𝑎𝑇𝑇̃ (𝛼𝜈𝑢 + 𝛽𝜈𝑣) 𝑏 (5) 

where 𝑇̃ (𝛼𝜈𝑢 + 𝛽𝜈𝑣)  is the three-dimensional Fourier 

transform of the tensor 𝑇(𝑥)  and 𝛼𝜈𝑢 + 𝛽𝜈𝑣 = 𝜈 =

[𝜈𝑥, 𝜈𝑦, 𝜈𝑧]
𝑇. We use ∙ ̃as the expression of the Fourier transform 

in the following derivation 

C. Tensor field decomposition 

We only consider the reconstruction of a symmetric tensor 

here in this work, which reduces unknown elements from 9 to 

6. It was shown by Sharafutdinov [47] that any sufficiently 

smooth symmetric tensor field which vanishes rapidly at 

infinity can be decomposed in a unique way to a solenoidal 

component 𝑇Ψ
𝑆(𝑥)  and an irrotational component 𝑇Φ

𝐼 (𝑥) 

(Appendix I): 

𝑇(𝑥) = 𝑇Ψ
𝑆(𝑥) + 𝑇Φ

𝐼 (𝑥), (6) 

where the solenoidal component 𝑇Ψ
𝑆(𝑥) is a symmetric tensor 

and is divergence free; and the irrotational component 𝑇Φ
𝐼 (𝑥) is 

a symmetric tensor. In (6), we specify the solenoidal component 

as a curl of a tensor potential in this case has to be applied to 

each column of Ψ (Appendix I): 

𝑇Ψ
𝑆(𝑥) = ∇ × Ψ(𝑥), (7) 

and the tensor potential is defined as 

Ψ(𝑥) =

[
 
 
 
 
 
 0

𝜕𝑋1

𝜕𝑧
−

𝜕𝑋1

𝜕𝑦

−
𝜕𝑋2

𝜕𝑧
0

𝜕𝑋2

𝜕𝑥
𝜕𝑋3

𝜕𝑦
−

𝜕𝑋3

𝜕𝑥
0

]
 
 
 
 
 
 

(𝑥), (8) 

with three scalar functions 𝑋1, 𝑋2, 𝑋3. Substituting (8) into (7), 

the solenoidal component is 

𝑇Ψ
𝑆(𝑥) =

[
 
 
 
 
 
 
𝜕2𝑋3

𝜕𝑦2
+

𝜕2𝑋2

𝜕𝑧2
−

𝜕2𝑋3

𝜕𝑦𝜕𝑥
−

𝜕2𝑋2

𝜕𝑧𝜕𝑥

−
𝜕2𝑋3

𝜕𝑥𝜕𝑦

𝜕2𝑋1

𝜕𝑧2
+

𝜕2𝑋3

𝜕𝑥2
−

𝜕2𝑋1

𝜕𝑧𝜕𝑦

−
𝜕2𝑋2

𝜕𝑥𝜕𝑧
−

𝜕2𝑋1

𝜕𝑦𝜕𝑧

𝜕2𝑋2

𝜕𝑥2
+

𝜕2𝑋1

𝜕𝑦2 ]
 
 
 
 
 
 

(𝑥). (9) 

The irrotational component in (6) is the gradient of a vector 

potential (Appendix I): 

𝑇Φ
𝐼 (𝑥) = ∇Φ(𝑥) + [∇Φ(𝑥)]

𝑇
, (10) 

and the vector potential is defined as 

Φ(𝑥) = [
Φ1

Φ2

Φ3

] (𝑥), (11) 

with Φ1 , Φ2 and Φ3 being three scalar functions. Using (10) 

and (11), the irrotational component is 

𝑇Φ
𝐼 (𝑥) =

[
 
 
 
 2

𝜕Φ1

𝜕𝑥

𝜕Φ1

𝜕𝑦
+

𝜕Φ2

𝜕𝑥

𝜕Φ1

𝜕𝑧
+

𝜕Φ3

𝜕𝑥

𝜕Φ1

𝜕𝑦
+

𝜕Φ2

𝜕𝑥
2

𝜕Φ2

𝜕𝑦

𝜕Φ2

𝜕𝑧
+

𝜕Φ3

𝜕𝑦

𝜕Φ1

𝜕𝑧
+

𝜕Φ3

𝜕𝑥

𝜕Φ2

𝜕𝑧
+

𝜕Φ3

𝜕𝑦
2

𝜕Φ3

𝜕𝑧 ]
 
 
 
 

(𝑥). (12)  

With (9) and (12), 𝑇̃(𝜈) can be written in terms of the Fourier 

transforms of 𝑋1, 𝑋2, 𝑋3, Φ1, Φ2 and Φ3: 

𝑇̃(𝜈) = 2𝜋𝑖 [

𝜈𝑦
2𝑋̃3(𝜈) + 𝜈𝑧

2𝑋̃2(𝜈) −𝜈𝑦𝜈𝑥𝑋̃3(𝜈) −𝜈𝑧𝜈𝑥𝑋̃2(𝜈)

−𝜈𝑥𝜈𝑦𝑋̃3(𝜈) 𝜈𝑧
2𝑋̃1(𝜈) + 𝜈𝑥

2𝑋̃3(𝜈) −𝜈𝑧𝜈𝑦𝑋̃1(𝜈)

−𝜈𝑥𝜈𝑧𝑋̃2(𝜈) −𝜈𝑦𝜈𝑧𝑋̃1(𝜈) 𝜈𝑥
2𝑋̃2(𝜈) + 𝜈𝑦

2𝑋̃1(𝜈)

] +

2𝜋𝑖 [

2𝜈𝑥Φ̃1(𝜈) 𝜈𝑦Φ̃1(𝜈) + 𝜈𝑥Φ̃2(𝜈) 𝜈𝑧Φ̃1(𝜈) + 𝜈𝑥Φ̃3(𝜈)

𝜈𝑦Φ̃1(𝜈) + 𝜈𝑥Φ̃2(𝜈) 2𝜈𝑦Φ̃2(𝜈) 𝜈𝑧Φ̃2(𝜈) + 𝜈𝑦Φ̃3(𝜈)

𝜈𝑧Φ̃1(𝜈) + 𝜈𝑥Φ̃3(𝜈) 𝜈𝑧Φ̃2(𝜈) + 𝜈𝑦Φ̃3(𝜈) 2𝜈𝑧Φ̃3(𝜈)

]    .   (13) 

According to (6), the Fourier projection theorem in (5) 

becomes:  

𝑝̃𝜃

𝑎 𝑏
(𝜈𝑢, 𝜈𝑣) = 𝑎𝑇𝑇̃Ψ

𝑆 (𝛼𝜈𝑢 + 𝛽𝜈𝑣) 𝑏 + 𝑎𝑇𝑇̃Φ
𝐼 (𝛼𝜈𝑢 + 𝛽𝜈𝑣) 𝑏 

Substituting (3) and (13) into the equation, we have  

𝑝̃𝜃

𝜃 𝜃
(𝜈𝑢, 𝜈𝑣) = 𝜃𝑇𝑇̃Ψ

𝑆 (𝛼𝜈𝑢 + 𝛽𝜈𝑣) 𝜃, (14) 

and  

𝑝̃
𝜃

𝛽 𝛽
(𝜈𝑢, 𝜈𝑣) = 𝛽𝑇𝑇̃Ψ

𝑆 (𝛼𝜈𝑢 + 𝛽𝜈𝑣)𝛽 + 𝛽𝑇𝑇̃Φ
𝐼 (𝛼𝜈𝑢 + 𝛽𝜈𝑣)𝛽.             

 (15) 

In (14), the irrotational component 𝜃𝑇𝑇̃Φ
𝐼 (𝛼𝜈𝑢 + 𝛽𝜈𝑣) 𝜃 is 0.                  

III. ALGORITHM 

We see from (14) that the directional X-ray transform 𝑝𝜃

𝜃 𝜃
 is 

composed of only the solenoidal component, which contains the 

three unknowns, 𝑋1, 𝑋2, 𝑋3. Thus, acquiring 𝑝𝜃

𝜃 𝜃
 around three 

axes can be used to reconstruct the solenoidal component. 

Based on (15), we acquire 𝑝
𝜃

𝛽 𝛽
 around three axes (more than 

likely the same three axes), together with solutions for 𝑋1, 𝑋2, 

𝑋3 , to reconstruct the irrotational component. This way our 

algorithm reconstructs the solenoidal component and the 

irrotational component using directional X-ray projections. 

A. Solenoidal component reconstruction using 𝑝𝜃

𝜃 𝜃
 

In (14), the expressions for the solenoidal and irrotational 

components of 𝑝̃𝜃

𝜃 𝜃
 are 

𝜃𝑇𝑇̃Ψ
𝑆 (𝛼𝜈𝑢 + 𝛽𝜈𝑣) 𝜃 = (𝜈𝑢cos 𝜃 cos𝜙 − 𝜈𝑣sin𝜙)2𝑋̃1 (𝜈𝑢𝛼 + 𝜈𝑣𝛽) 

+ 𝜈𝑢(cos 𝜃 sin𝜙 + 𝜈𝑣cos𝜙)2𝑋̃2 (𝜈𝑢𝛼 + 𝜈𝑣𝛽) 

+ (𝜈𝑢sin 𝜃)2𝑋̃3 (𝜈𝑢𝛼 + 𝜈𝑣𝛽),                      

(16) 

𝜃𝑇𝑇̃Φ
𝐼 (𝛼𝜈𝑢 + 𝛽𝜈𝑣) 𝜃 = 0.                                                 (17) 
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F(or convenience, we identify projections 𝑝𝜃

𝜃 𝜃
 rotating about 

the x, y and z axes: 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 and consider reconstructing the 

three unknowns 𝑋1, 𝑋2, 𝑋3. 

For projections acquired around the x-axis, 𝜙 in (3) is 90°, 

𝜃1 = (0, sinθ, cosθ), 𝛼1 = (-1, 0, 0), 𝛽1 = (0, -cosθ, sinθ), and 

[𝜈𝑥, 𝜈𝑦, 𝜈𝑧]
𝑇 = 𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1 = [−𝜈𝑢1

, −𝜈𝑣1
cos𝜃, 𝜈𝑣1

sin𝜃]𝑇 . 

Then summing (16) and (17), we have: 

𝑃̃𝑥(𝜈𝑢1
, 𝜈𝑣1

) = 𝜈𝑣1
2𝑋̃1 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1) 

+(𝜈𝑢1
cos𝜃)2𝑋̃2 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1)                        

+(𝜈𝑢1
sin𝜃)2𝑋̃3 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1).             (18) 

Similarly, for projections acquired around the y-axis, 𝜙 in (3) 

is 0°, 𝜃2= (sinθ, 0, cosθ), 𝛼2=(0, 1, 0), 𝛽2=(-cosθ, 0, sinθ), and 

[𝜈𝑥, 𝜈𝑦, 𝜈𝑧]
𝑇 = 𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2 = [−𝜈𝑣2

cos𝜃, 𝜈𝑢2
, 𝜈𝑣2

sin𝜃]𝑇 . 

We can write 𝑝̃𝜃

𝜃 𝜃
 as: 

𝑃̃𝑦(𝜈𝑢2
, 𝜈𝑣2

) = (𝜈𝑢2
cos𝜃)2𝑋̃1 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2) 

+𝜈𝑣2
2𝑋̃2 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2)                                    

+(𝜈𝑢2
sin𝜃)2𝑋̃3 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2).            (19) 

For 𝑝
𝜃

𝜃 𝜃
 acquired around the z-axis, θ in (3) equals 90°, 𝜃3= 

(cos𝜙, sin𝜙, 0),  𝛼3 = (-sin𝜙, cos𝜙, 0),   𝛽3= (0, 0, 1), and 

[𝜈𝑥, 𝜈𝑦, 𝜈𝑧]
𝑇 = 𝜈𝑢3

𝛼3 + 𝜈𝑣3
𝛽3 = [−𝜈𝑢3

sin𝜙, 𝜈𝑢3
cos𝜙, 𝜈𝑣3

]𝑇 . 

We have  

𝑃̃𝑧(𝜈𝑢3
, 𝜈𝑣3

) = (𝜈𝑣3
sin𝜙)2𝑋̃1 (𝜈𝑢3

𝛼3 + 𝜈𝑣3
𝛽3) 

+(𝜈𝑣3
cos𝜙)

2
𝑋̃2 (𝜈𝑢3

𝛼3 + 𝜈𝑣3
𝛽3)                         

+𝜈𝑢3
2𝑋̃3 (𝜈𝑢3

𝛼3  + 𝜈𝑣3
𝛽3).                          (20) 

In these three equations, the zenith angle 𝜃 and the azimuth 

angle 𝜙 are not necessarily the same, neither are vectors 𝛼 and 

𝛽. Hence the corresponding coefficients of the vectors, 𝜈𝑣 and 

𝜈𝑢 vary according to (18) - (20). Thus, we add numerical values 

of 1, 2, 3 to indicate the difference.  

To solve (18) - (20) for 𝑋̃1, 𝑋̃2 and 𝑋̃3, we need to change to 

the coordinate system (𝜈𝑥, 𝜈𝑦, 𝜈𝑧) so that the three equations are 

sampled in the same 3D grid. Exchanging 𝜈𝑢 , 𝜈𝑣  with 𝜈𝑥 , 𝜈𝑦 

and 𝜈𝑧 in (18) - (20): 

𝑃̃𝑥(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) = (𝜈𝑦/cos𝜃)
2
𝑋̃1(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) 

+(𝜈𝑥cos𝜃)2𝑋̃2(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) + (𝜈𝑥sin𝜃)2𝑋̃3(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) , (21)  

𝑃̃𝑦(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) = (𝜈𝑦cos𝜃)
2
𝑋̃1(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) 

+(𝜈𝑧/sin𝜃)2𝑋̃2(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) + (𝜈𝑦sin𝜃)
2
𝑋̃3(𝜈𝑥, 𝜈𝑦, 𝜈𝑧), (22) 

𝑃̃𝑧(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) = (𝜈𝑧sin𝜙)2𝑋̃1(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) 

+(𝜈𝑧cos𝜙)2𝑋̃2(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) + (𝜈𝑥/sin𝜙)2𝑋̃3(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) . (23) 

Notice that 𝜈𝑣1
, 𝜈𝑣2

 and 𝜈𝑢3
 have two expressions, 𝜈𝑣1

=

−𝜈𝑦/cos𝜃 = 𝜈𝑧/sin𝜃 , 𝜈𝑣2
= −𝜈𝑥/cos𝜃 = 𝜈𝑧/sin𝜃 , 𝜈𝑢3

=

−𝜈𝑥/sin𝜙 = 𝜈𝑦/cos𝜙. Using Cramer’s rule [48] to the system 

of linear equations, the solutions of  𝑋̃1, 𝑋̃2 and 𝑋̃3 are: 

𝑋̃1 =
(𝑏2𝑐3 − 𝑏3𝑐2)𝑃̃𝑥 + (𝑏3𝑐1 − 𝑏1𝑐3)𝑃̃𝑦 + (𝑏1𝑐2 − 𝑏2𝑐1)𝑃̃𝑧

𝑎3𝑏1𝑐2 + 𝑎2𝑏3𝑐1 + 𝑎1𝑏2𝑐3 − 𝑎2𝑏1𝑐3 − 𝑎3𝑏2𝑐1 − 𝑎1𝑏3𝑐2
, (24) 

𝑋̃2 =
(𝑎3𝑐2 − 𝑎2𝑐3)𝑃̃𝑥 + (𝑎1𝑐3 − 𝑎3𝑐1)𝑃̃𝑦 + (𝑎2𝑐1 − 𝑎1𝑐2)𝑃̃𝑧

𝑎3𝑏1𝑐2 + 𝑎2𝑏3𝑐1 + 𝑎1𝑏2𝑐3 − 𝑎2𝑏1𝑐3 − 𝑎3𝑏2𝑐1 − 𝑎1𝑏3𝑐2
, (25) 

𝑋̃3 =
(𝑎2𝑏3 − 𝑎3𝑏2)𝑃̃𝑥 + (𝑎3𝑏1 − 𝑎1𝑏3)𝑃̃𝑦 + (𝑎1𝑏2 − 𝑎2𝑏1)𝑃̃𝑧

𝑎3𝑏1𝑐2 + 𝑎2𝑏3𝑐1 + 𝑎1𝑏2𝑐3 − 𝑎2𝑏1𝑐3 − 𝑎3𝑏2𝑐1 − 𝑎1𝑏3𝑐2
, (26) 

where 
𝑎1 = (𝜈𝑦/cos𝜃)2 = (𝜈𝑧/sin𝜃)2,  𝑏1 = (𝜈𝑥cos𝜃)2, 𝑐1 = (𝜈𝑥sin𝜃)2, 

𝑎2 = (𝜈𝑦cos𝜃)2,  𝑏2 = (𝜈𝑧/sin𝜃)2 = (𝜈𝑥/cos𝜃)2, 𝑐2 = (𝜈𝑦sin𝜃)2, 

𝑎3 = (𝜈𝑧sin𝜙)2,  𝑏3 = (𝜈𝑧cos𝜙)2, 𝑐3 = (𝜈𝑥/sin𝜙)2 = (𝜈𝑦/cos𝜙)2. 

Once solving for 𝑋̃1, 𝑋̃2 and 𝑋̃3, we can evaluate 𝑋1, 𝑋2, 𝑋3 

via the inverse Fourier transform. However, interpolating from 

polar to Cartesian coordinates in direct Fourier reconstruction 

produces angular aliasing artifacts in the reconstructed image 

[49]. Hence, we reconstruct 𝑋1, 𝑋2, 𝑋3 slice by slice as in CT 

with a filtered back-projection method using an external 

Hamming window. Using a filtered back-projection 

reconstruction by filtering in frequency space or providing a 

convolution reconstruction in real space also suppresses high 

frequency noise providing smoother results. 

Taking 𝑋1 as an example, 3D inverse Fourier transform: 

𝑋1(𝑥, 𝑦, 𝑧)

= ∫ ∫ ∫ 𝑋̃1(𝜈𝑥, 𝜈𝑦, 𝜈𝑧)

∞

0

∞

0

∞

0

𝑒2𝜋𝑖(𝑥𝜈𝑥+𝑦𝜈𝑦+𝑧𝜈𝑧)𝑑𝜈𝑥𝑑𝜈𝑦𝑑𝜈𝑧.      (27)  

We transform 𝜈𝑥 , 𝜈𝑦 , and 𝜈𝑧  to 𝜈𝑢  and 𝜈𝑣  with 𝜙 in (3) being 

90°and arrive at 

𝑋1(𝑥, 𝑦, 𝑧)

= ∫ ∫ ∫ 𝑋̃1(𝜈𝑢, 𝜈𝑣, θ)

∞

0

∞

0

2𝜋

0

𝑒2𝜋𝑖(−𝑥𝜈𝑢−𝑦𝜈𝑣cos𝜃+𝑧𝜈𝑣sin𝜃)𝜈𝑣𝑑𝜈𝑢𝑑𝜈𝑣𝑑𝜃, 

= ∫ ∫ ∫ 𝑋̃1(𝜈𝑢, 𝜈𝑣 , θ)

∞

−∞

∞

−∞

𝜋

0

𝑒2𝜋𝑖(−𝑥𝜈𝑢−𝑦𝜈𝑣cos𝜃+𝑧𝜈𝑣sin𝜃)|𝜈𝑣|𝑑𝜈𝑢𝑑𝜈𝑣𝑑𝜃. 

(28) 

Changing 𝜈𝑥, 𝜈𝑦 and 𝜈𝑧 to 𝜈𝑢 and 𝜈𝑣, the expression of 𝑋̃1 in 

(24) becomes  

𝑋̃1(𝜈𝑢, 𝜈𝑣, θ)

=
−(𝜈𝑣)

2𝑃̃𝑥 + (𝜈𝑢cos𝜃)2𝑃̃𝑦 + ((sin𝜃)2𝜈𝑣)
2(1 + (cos𝜃)2)𝑃̃𝑧

((cos𝜃)3𝜈𝑢𝜈𝑣)
2 + (𝜈𝑣sin𝜃)4 − (𝜈𝑣sin𝜃cos𝜃)4 − (𝜈𝑣)

4
.   

Substituting this expression for 𝑋̃1: 

𝑋1(𝑥, 𝑦, 𝑧)

= ∫ ∫ ∫
−(𝜈𝑣)

2𝑃̃𝑥 + (cos𝜃𝜈𝑢)2𝑃̃𝑦 + ((sin𝜃)2𝜈𝑣)
2(1 + (cos𝜃)2)𝑃̃𝑧

((cos𝜃)3𝜈𝑢𝜈𝑣)
2 + (sin𝜃𝜈𝑣)

4 − (sin𝜃cos𝜃𝜈𝑣)
4 − (𝜈𝑣)

4

∞

−∞

∞

−∞

𝜋

0

 

× 𝑒2𝜋𝑖(−𝑥𝜈𝑢−𝑦𝜈𝑣cos𝜃+𝑧𝜈𝑣sin𝜃)|𝜈𝑣|𝑑𝜈𝑢𝑑𝜈𝑣𝑑𝜃. 
Let the following represent the frequency space filters 

multiplied by the Fourier transform of the projection 

components acquired about the x-, y- and z-axis: 
M̃𝑥 =

−(𝜈𝑣)2𝑃̃𝑥

((cos𝜃)3𝜈𝑢𝜈𝑣)2+(sin𝜃𝜈𝑣)4−(sin𝜃cos𝜃𝜈𝑣)4−(𝜈𝑣)4
|𝜈𝑣|, 

M̃𝑦 =
(𝑐𝑜𝑠𝜃𝜈𝑢)2𝑃̃𝑦

((cos𝜃)3𝜈𝑢𝜈𝑣)2+(sin𝜃𝜈𝑣)4−(sin𝜃cos𝜃𝜈𝑣)4−(𝜈𝑣)4
|𝜈𝑣|,  

M̃𝑧 =
((𝑠𝑖𝑛𝜃)2𝜈𝑣)

2
(1+(𝑐𝑜𝑠𝜃)2)𝑃̃𝑧

((cos𝜃)3𝜈𝑢𝜈𝑣)2+(sin𝜃𝜈𝑣)4−(sin𝜃cos𝜃𝜈𝑣)4−(𝜈𝑣)4
|𝜈𝑣|.  

In the expressions for M̃𝑥 , M̃𝑦 , and M̃𝑧 , we see the 

characteristic ramp filter |𝜈𝑣| multiplied by many other factors 

to form the filter function in our application of the algorithm. 

Then applying the inverse Fourier transform, we have 
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𝑋1(𝑥, 𝑦, 𝑧) obtained by the backprojection of M𝑥, M𝑦, M𝑧: 

𝑋1(𝑥, 𝑦, 𝑧) = ∫ [M𝑥(−𝑥,−𝑦cos𝜃 + 𝑧sin𝜃, 𝜃)
𝜋

0

+ M𝑦(−𝑥,−𝑦cos𝜃 + 𝑧sin𝜃, 𝜃)

+ M𝑧(−𝑥,−𝑦cos𝜃 + 𝑧sin𝜃, 𝜃)]𝑑𝜃.    (29) 

Similar expressions can be derived for 𝑋2 and 𝑋3. 

The algorithm to reconstruct the solenoidal component of the 

tensor field is presented below as Reconstruction 1. In the 

implementation, we simulate 𝑝𝜃

𝜃 𝜃
 around x, y, z axes. Then we 

transform the coordinate system to keep projections around 

three axes the same following the Fourier transform. After 

transformation of the coordinate system, 2D Fourier transforms 

of the projections are used to calculate expressions for 𝑋̃1, 𝑋̃2 

and 𝑋̃3 in (24)-(26). At the same time, to avoid differentiation 

in computing the solenoidal components in the last step, we use 

the Fourier transform of 𝜕2 X1/ 𝜕𝑧2  equal to −𝜈z
2𝑋̃1  in the 

implementation. Upon having the Fourier transform of the 

solenoidal components, we reconstruct each element by inverse 

Fourier transform and back-projection. 

 

Reconstruction 1 Solenoidal component  

Input: Directional X-ray Projections (𝑝
𝜃

𝜃 𝜃
) P𝑥, P𝑦, P𝑧 

for m = x, y, z do 

   Compute P̃𝑚: Fourier transform of P𝑚  

  Compute M̃𝑚: Filter P̃𝑚  

    Compute M𝑚: Inverse Fourier transform of M̃𝑚 

End for 

for k=1, 2, 3 do  

    Reconstruct 𝑋𝑘: Back-projection 

end for 

Compute Solenoidal component using (9) 

B. Irrotational component reconstruction using 𝑝
𝜃

𝛽 𝛽
 

In (14), the solenoidal and irrotational components of 𝑝̃
𝜃

𝛽 𝛽
 

have the expressions as follows: 

 

𝛽𝑇𝑇̃Ψ
𝑆 (𝛼𝜈𝑢 + 𝛽𝜈𝑣)𝛽

= (𝜈𝑢 sin𝜃 cos𝜙)2𝑋̃1 (𝜈𝑢𝛼 + 𝜈𝑣𝛽)

+ (𝜈𝑢sin𝜃sin𝜙)2𝑋̃2 (𝜈𝑢𝛼 + 𝜈𝑣𝛽) 

+ (𝜈𝑢cos𝜃)2𝑋̃3 (𝜈𝑢𝛼 + 𝜈𝑣𝛽) ,        (30) 

𝛽𝑇𝑇̃Φ
𝐼 (𝛼𝜈𝑢 + 𝛽𝜈𝑣)𝛽

= −2𝜈𝑣 cos𝜃 cos𝜙Φ̃1 (𝜈𝑢𝛼 + 𝜈𝑣𝛽)

− 2𝜈𝑣 cos𝜃 sin𝜙Φ̃2 (𝜈𝑢𝛼 + 𝜈𝑣𝛽) 

+2𝜈𝑣 sin𝜃 Φ̃3 (𝜈𝑢𝛼 + 𝜈𝑣𝛽) .           (31) 

Similarly, we use Q𝑥 , Q𝑦 , Q𝑧  to identify projections 𝑝
𝜃

𝛽 𝛽
 

acquired rotating about x, y and z axes and reconstruct the three 

unknowns Φ1, Φ2 and Φ3. 

For projections acquired around the x-axis, 𝜙 in (3) is 90°, 

thus summing (30) and (31): 

𝑄̃𝑥(𝜈𝑢1
, 𝜈𝑣1

) = (𝜈𝑢1
sin𝜃)

2
𝑋̃2 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1)

+ (𝜈𝑢1
cos𝜃)

2
𝑋̃3 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1)

− 2𝜈𝑣1
cos𝜃 Φ̃2 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1) 

+2𝜈𝑣1
sin𝜃 Φ̃3 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1).   (32) 

For  𝑝
𝜃

𝛽 𝛽
 acquired around the y-axis,  𝜙 equals 0° in (3), thus: 

𝑄̃𝑦(𝜈𝑢2
, 𝜈𝑣2

) = (𝜈𝑢2
sin𝜃)

2
𝑋̃1 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2)

+ (𝜈𝑢2
cos𝜃)

2
𝑋̃3 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2) 

−2𝜈𝑣2
cos𝜃 Φ̃1 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2)              

+2𝜈𝑣2
sin𝜃 Φ̃3 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2).   (33) 

For projections acquired around the z-axis, θ is 90° in (3), 

hence: 

𝑄̃𝑧(𝜈𝑢3
, 𝜈𝑣3

) = (𝜈𝑢3
cos𝜙)

2
𝑋̃1 (𝜈𝑢3

𝛼3 + 𝜈𝑣3
𝛽3)

+ (𝜈𝑢3
sin𝜙)

2
𝑋̃2 (𝜈𝑢3

𝛼3 + 𝜈𝑣3
𝛽3) 

+ 2𝜈𝑣3
Φ̃3 (𝜈𝑢3

𝛼3 + 𝜈𝑣3
𝛽3).            (34) 

Since we anticipate implementing a reconstruction where 𝑋̃1, 

𝑋̃2 and 𝑋̃3 are known as discussed in Section A., we then form 

three equations in the three unknowns Φ1 , Φ2  and Φ3 . 

Subtracting expressions for 𝑋̃1, 𝑋̃2 and 𝑋̃3 from 𝑄̃𝑥, 𝑄̃𝑦 and 𝑄̃𝑧 

in (32)-(34), we arrive at the following expressions 𝑁̃𝑥, 𝑁̃𝑦 and 

𝑁̃𝑧 in terms of the three unknowns Φ1, Φ2 and Φ3: 

𝑁̃𝑥(𝜈𝑢1
, 𝜈𝑣1

) = 𝑄̃𝑥(𝜈𝑢1
, 𝜈𝑣1

) − (𝜈𝑢1
sin𝜃)

2
𝑋̃2 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1)

− (𝜈𝑢1
cos𝜃)

2
𝑋̃3 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1) ,

= −2𝜈𝑣1
cos𝜃 Φ̃2 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1)

+ 2𝜈𝑣1
sin𝜃 Φ̃3 (𝜈𝑢1

𝛼1 + 𝜈𝑣1
𝛽1),         (35) 

𝑁̃𝑦(𝜈𝑢2
, 𝜈𝑣2

) = 𝑄̃𝑦(𝜈𝑢2
, 𝜈𝑣2

)

− (𝜈𝑢2
sin𝜃)

2
𝑋̃1 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2)

− (𝜈𝑢2
cos𝜃)

2
𝑋̃3 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2) ,

= −2𝜈𝑣2
cos𝜃 Φ̃1 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2)

+ 2𝜈𝑣2
sin𝜃 Φ̃3 (𝜈𝑢2

𝛼2 + 𝜈𝑣2
𝛽2),        (36) 

𝑁̃𝑧(𝜈𝑢3
, 𝜈𝑣3

) = 𝑄̃𝑧(𝜈𝑢3
, 𝜈𝑣3

)

− (𝜈𝑢3
cos𝜙)

2
𝑋̃1 (𝜈𝑢3

𝛼3 + 𝜈𝑣3
𝛽3)

− (𝜈𝑢3
sin𝜙)

2
𝑋̃2 (𝜈𝑢3

𝛼3 + 𝜈𝑣3
𝛽3) ,

= 2𝜈𝑣3
Φ̃3 (𝜈𝑢3

𝛼3 + 𝜈𝑣3
𝛽3).                  (37) 

Likewise, to solve (35)-(37) for 𝑁̃𝑥, 𝑁̃𝑦, 𝑁̃𝑧, we change to the 

coordinate system (𝜈𝑥, 𝜈𝑦, 𝜈𝑧) by exchanging 𝜈𝑢 , 𝜈𝑣  with 𝜈𝑥 , 

𝜈𝑦 and 𝜈𝑧 in (35) - (37): 

𝑁̃𝑥(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) = 2𝜈𝑦Φ̃2(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) + 2𝜈𝑧Φ̃3(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) (38) 

𝑁̃𝑦(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) = 2𝜈𝑥Φ̃1(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) + 2𝜈𝑧Φ̃3(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) (39) 

   𝑁̃𝑧(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) = 2𝜈𝑧Φ̃3(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) (40) 

After coordinate system transformation, the solutions of  Φ̃1, 

Φ̃2 and Φ̃3 are: 

Φ̃1 =
𝑁̃𝑦 − 𝑁̃𝑧

2𝜈𝑥

(41) 
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Φ̃2 =
𝑁̃𝑥 − 𝑁̃𝑧

2𝜈𝑦

(42) 

Φ̃3 =
𝑁̃𝑧

2𝜈𝑧

(43) 

Like the reconstruction of 𝑋1 , we reconstruct Φ1  with 

projections around the x-axis. Exchanging 𝜈𝑥, 𝜈𝑦 and 𝜈𝑧 to 𝜈𝑢, 

𝜈𝑣 in (41) 

Φ̃1 =
𝑁̃𝑦 − 𝑁̃𝑧

−2𝜈𝑢
. (44) 

The 3D inverse Fourier transform of Φ̃1 is 

Φ1(𝑥, 𝑦, 𝑧)

= ∫ ∫ ∫ Φ̃1(𝜈𝑥, 𝜈𝑦, 𝜈𝑧)

∞

0

∞

0

∞

0

𝑒2𝜋𝑖(𝑥𝜈𝑥+𝑦𝜈𝑦+𝑧𝜈𝑧)𝑑𝜈𝑥𝑑𝜈𝑦𝑑𝜈𝑧. 

We transform 𝜈𝑥, 𝜈𝑦 and 𝜈𝑧 to 𝜈𝑢 and 𝜈𝑣:  

Φ1(𝑥, 𝑦, 𝑧)

= ∫ ∫ ∫ Φ̃1(𝜈𝑢, 𝜈𝑣 , θ)

∞

0

∞

0

2𝜋

0

𝑒2𝜋𝑖(−𝑥𝜈𝑢−𝑦𝜈𝑣cos𝜃+𝑧𝜈𝑣sin𝜃)𝜈𝑣𝑑𝜈𝑢𝑑𝜈𝑣𝑑𝜃 . 

Substituting the expression for Φ̃1: 

Φ1(𝑥, 𝑦, 𝑧)

= −∫ ∫ ∫
𝑁𝑦 − 𝑁𝑧

2𝜈𝑢

∞

0

∞

0

2𝜋

0

𝑒2𝜋𝑖(−𝑥𝜈𝑢−𝑦𝜈𝑣cos𝜃+𝑧𝜈𝑣sin𝜃)𝜈𝑣𝑑𝜈𝑢𝑑𝜈𝑣𝑑𝜃 

= −∫ ∫ ∫
𝑁𝑦 − 𝑁𝑧

2|𝜈𝑢|

∞

−∞

∞

−∞

𝜋

0

𝑒2𝜋𝑖(−𝑥𝜈𝑢−𝑦𝜈𝑣cos𝜃+𝑧𝜈𝑣sin𝜃)|𝜈𝑣|𝑑𝜈𝑢𝑑𝜈𝑣𝑑𝜃. (45) 

Let 𝐿̃𝑦 =
𝑁̃𝑦

2|𝜈𝑢|
|𝜈𝑣|  and 𝐿̃𝑧 =

𝑁̃𝑧

2|𝜈𝑢|
|𝜈𝑣| , then taking the 

inverse Fourier transform, we have Φ1(𝑥, 𝑦, 𝑧) obtained by the 

backprojection of 𝐿𝑦 and 𝐿𝑧: 

Φ1(𝑥, 𝑦, 𝑧) = ∫[𝐿𝑦(−𝑥,−𝑦𝑐𝑜𝑠𝜃 + 𝑧𝑠𝑖𝑛𝜃, 𝜃)

𝜋

0

 

−𝐿𝑧(−𝑥,−𝑦𝑐𝑜𝑠𝜃 + 𝑧𝑠𝑖𝑛𝜃, 𝜃)]𝑑𝜃.              (46) 

Φ2 and Φ3 can be derived similarly.  

The algorithm to reconstruct the irrotational component of 

the tensor field is presented below as Reconstruction 2. We also 

implement a hamming window in the filtered backprojection 

method based on the expressions for Φ1 , Φ2  and Φ3 . The 

implementation to reconstruct the irrotational component is the 

same as that for solenoidal component in Reconstruction 1. 

  

Reconstruction 2 Irrotational component  

Input: Directional X-ray Projections (𝑝
𝜃

𝛽 𝛽
) Q𝑥, Q𝑦, Q𝑧 

for m = x, y, z do 

   Compute Q̃𝑚:Fourier transform of Q𝑚 

   Compute Ñ𝑚: Merging Q̃𝑚 and 𝑋̃1, 𝑋̃2, 𝑋̃3 

    Compute L̃𝑚: Filter Ñ𝑚  
    Compute L𝑚: Inverse Fourier transform of L̃𝑚     

End for 

for k=1, 2, 3 do  

    Reconstruct Φ𝑘: Back-projection 

end for 

Compute Irrotational component using (12) 

IV. METHODS 

The following presents the methods used to evaluate our 

algorithm. In particular we used two phantoms, one a discrete 

numerical phantom and the other a realistic diffusion tensor 

field of an excised human heart. 

A. Discrete representation of the tensor field 

The discretized tensor field is stored as a 9N3 matrix, 

containing the nine elements of the second rank tensor field for 

each voxel of an N × N × N voxel grid. Projection data are 

represented by a 3 × 𝑛𝜃  × h × w matrix, where for each 3 

rotation axes (X, Y and Z axes), h × w tomographic projections 

are acquired at 𝑛𝜃  angular steps with h being the number of 

two-dimensional slices and w being radius of rotation. 

B. Phantoms 

1) A simple illustrative phantom 
The first phantom was constructed using (9) and (12) from 

two balls of uniform intensities placed in a 128 × 128 × 128 

array as shown in Fig. 2(a).  Six 128 × 128 × 128 arrays were 

assembled, such that in each array the two balls took on one of 

the scalar values for 𝑋1, 𝑋2, 𝑋3, Φ1 , Φ2 and Φ3 in Fig. 2(b). 

Thus, each array had two balls with the same constant value and 

a uniform background. Using gradient as shown in (9) and (12), 

solenoidal and irrotational components were generated 

separately, and then summed to obtain the tensor field for the 

phantom. The generated solenoidal, irrotational components 

and tensor field only contains the borders of the ball, other area 

is 0. Fig. 3 (a), (b), (c) display the x-y slice through the center 

of the 9 elements for the solenoidal component, the irrotational 

component, and the sum forming the tensor field for the 

phantom, respectively. 

  
                   (a)                                                 (b) 
Fig. 2. Six scalar fields were used to form the tensor field using (9) and (12). (a) 

Illustration of the central transaxial slice through the two balls that were 

assigned the scalar values in the table (b) for the tensor potential (𝑋1, 𝑋2, 𝑋3) 

and the vector potential (Φ1, Φ2, Φ3). 

 

2) Cardiac diffusion tensor image 
The second phantom used for simulations in this work is a 

cardiac diffusion tensor image that was obtained by scanning a 

normal excised human heart with a 4-element phased array coil 

on a 1.5 T GE CV/I MRI Scanner (GE Medical System, 

Waukesha, WI). Details about the heart and acquisition 

parameters are described in [50]. 
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Author’s version 

      
(a)                                                                   (b)                                                                              (c) 

Fig. 3. The x-y slice through the center of the 9 elements for (a) solenoidal component, (b) irrotational component and (c) tensor field 

 

  
Fig. 4. Nine elements of cardiac diffusion tensor phantom 

The diffusion tensor T was obtained from [14] as 

eigenvectors 𝜀1 , 𝜀2  and 𝜀3  with eigenvalues 𝜆1 , 𝜆2  and 𝜆3 

for  𝜆1 ≥ 𝜆2 ≥ 𝜆3. The data set was arranged in a 256 × 256 

× 134 array for each eigenvector and eigenvalue, with voxel 

size being 429.7 µm × 429.7 µm ×1000 µm. Denoting 𝑉 as 

the matrix of eigenvectors and D = diag (𝜆1, 𝜆2, 𝜆3) as the 

diagonal matrix of eigenvalues, the diffusion tensor can be 

computed from 𝑇 = 𝑉𝐷𝑉𝑇 . The 9 elements of the cardiac 

diffusion tensor phantom are shown in Fig. 4, which were 

reformulated from the eigenvalues and eigenvectors. 

C. Forward model 

We used the same method to generate the projections for 

the simple numerical phantom and the heart diffusion tensor 

field calculated using the eigenvectors and eigenvalues. Both 

the phantom and projections had the same pixel size. A 

discrete version of the scalar projections 𝑝
𝜃

𝜃 𝜃
 and 𝑝

𝜃

𝛽 𝛽
 were 

formed using ray tracing. For example, taking 𝑝
𝜃

𝜃 𝜃
 acquired 

around the x-axis, 𝜙 in (3) is 90°and 𝜃 = (0, sinθ, cosθ). 

Due to symmetry, 𝑡𝑦𝑧  is the same as 𝑡𝑧𝑦 . Our approach 

generates each projection one angle (one θ value in this 

example) at a time for the directional X-ray transform 

𝑝𝜃

𝜃 𝜃
= ∫ 𝜃𝑇  𝑇 (𝑡𝜃 + 𝑢𝛼 + 𝑣𝛽) 𝜃 𝑑𝑡

∞

−∞

 

= ∫(𝑡𝑦𝑦𝑠𝑖𝑛2𝜃 + 2𝑡𝑦𝑧𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝑡𝑧𝑧𝑐𝑜𝑠2𝜃)𝑑𝑡.          

∞

−∞

 

Using ray-tracing, the contribution of each voxel to the 

integral was calculated by multiplying the length of the voxel 

intersection with the ray multiplied by the value of the tensor 

elements (𝑡𝑦𝑦, 𝑡𝑦𝑧 and 𝑡𝑧𝑧) times their coefficients (𝑠𝑖𝑛2𝜃, 

2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 and 𝑐𝑜𝑠2𝜃) in the voxel. For each of the three 

rotation axes, the phantom rotated through 180° in 1° 

increments so that a total of 540 parallel projections were 

formed about three axes. 

D. Evaluation 

To evaluate the difference between the reconstruction 

results and the phantom, we used the 2-norm error by 

summing the normalized difference between the 
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reconstruction and phantom for each tensor element and for 

each first principal eigenvalue as given by the following 

expressions for the tensors and principal eigenvalues, 

respectively: 

 
𝑆𝑡(𝑇𝑢𝑣)

=  

∑ (
𝑅𝑒𝑐𝑜𝑛𝑇𝑢𝑣

𝑖 − 𝑃ℎ𝑎𝑛𝑡𝑜𝑚𝑇𝑢𝑣
𝑖

max
𝑘 = 1,⋯ ,𝑁(𝑃ℎ𝑎𝑛𝑡𝑜𝑚𝑇𝑢𝑣

𝑘 ) −
min

𝑘 = 1,⋯ ,𝑁
(𝑃ℎ𝑎𝑛𝑡𝑜𝑚𝑇𝑢𝑣

𝑘 )
)

2

𝑁
𝑖=1

𝑁
 

(47) 
𝑆𝑒(𝐸11)

=  

∑ (
𝑅𝑒𝑐𝑜𝑛𝐸11

𝑖 − 𝑃ℎ𝑎𝑛𝑡𝑜𝑚𝐸11
𝑖

max
𝑘 = 1,⋯ ,𝑁 (𝑃ℎ𝑎𝑛𝑡𝑜𝑚𝐸11

𝑘 ) −
min

𝑘 = 1,⋯ ,𝑁
(𝑃ℎ𝑎𝑛𝑡𝑜𝑚𝐸11

𝑘 )
)

2

𝑁
𝑖=1

𝑁
  

(48) 

where N is the number of voxels that at summed over;  

𝑅𝑒𝑐𝑜𝑛𝑇𝑢𝑣
𝑖  is the value in voxel i of the reconstructed tensor 

element 𝑇𝑢𝑣
𝑖  and 𝑃ℎ𝑎𝑛𝑡𝑜𝑚𝑇𝑢𝑣

𝑖  is the value in voxel i of the 

phantom tensor element 𝑇𝑢𝑣
𝑖  ; and 𝑅𝑒𝑐𝑜𝑛𝐸11

𝑖  is the value in 

voxel i of the reconstructed tensor element principal 

eigenvalue 𝐸11
𝑖  and 𝑃ℎ𝑎𝑛𝑡𝑜𝑚𝐸11

𝑖 is the value in voxel i of the 

phantom tensor element principal eigenvalue 𝐸11
𝑖 . 

Fractional anisotropy (FA) was also used to deduce the 

accuracy of the reconstructions. FA gives the degree of 

anisotropy of a diffusion process and is defined using the 

eigenvalues (𝜆1, 𝜆2 and 𝜆3) of the tensor: 

FA = √
3

2

√(𝜆1 − 𝜆)2 + (𝜆2 − 𝜆)2 + (𝜆3 − 𝜆)2

√𝜆1
2 + 𝜆2

2 + 𝜆3
2

             (49) 

where 𝜆 =
𝜆1+𝜆2+𝜆3

3
. 

To evaluate the noise property of the algorithm, we 

calculated the signal-to-noise ratio (SNR) for the first 

principal eigenvalue of the reconstructions, which is defined: 

𝑆𝑁𝑅 =
𝑅𝑒𝑐𝑜𝑛𝐸11

𝜎𝐸11

(50) 

where 𝑅𝑒𝑐𝑜𝑛𝐸11
 and 𝜎𝐸11

 are the mean and the standard 

deviation of the reconstructed tensor principal eigenvalue 

𝐸11, respectively.  

V. RESULTS 

A. A simple illustrative phantom  

1) Solenoidal component 
The reconstruction through the center slice of the 

solenoidal component for the simulated tensor field of the 

simple illustrative phantom is displayed element by element 

in Fig. 5. We reconstructed the projections 𝑝𝜃

𝜃 𝜃
 acquired 

around three axes using the method in Reconstruction 1. The 

reconstructed image matrix was 128 × 128 × 128, the same 

as that of the phantom. The three columns from left to right 

form the nine elements of the phantom (as defined in Fig. 

3(a)), the reconstructed image, and their profiles along the 

red line in the first column in Fig. 5(a). The profiles of the 

reconstructed image are similar to those of the phantom. The 

central slice of the numerical phantom was selected to 

evaluate the quantitative accuracy of our algorithm using 𝑆𝑡 

in (47). Table 1 summarizes the results for each tensor 

element. Due to symmetry of the tensor, Txy and Tyx have the 

same 𝑆𝑡, so does Txz and Tzx; and Tyz and Tzy. From the table, 

the errors in the reconstructed solenoidal component are 

small (< 0.0008).  

 
Table 1. The 𝑆𝑡 for each element of the solenoidal component, irrotational 

component and tensor field for the simple illustrative phantom 

 solenoidal 

component 

irrotational 

component 
tensor field 

Txx 7.4057e-5 2.0640e-4 2.4870e-4 

Txy/Tyx 3.1368e-4 1.0679e-3 8.5493e-4 

Txz/Tzx 5.1750e-4 6.9623e-4 6.3424e-4 

Tyy 8.4666e-5 5.2978e-4 7.2026e-4 

Tyz/Tzy 7.3759e-4 2.2040e-4 2.2134e-3 

Tzz 3.8806e-4 3.1039e-4 1.5316e-3 

     
                                   (a)                                                                          (b)                                                                                  (c) 

Fig. 5. Reconstruction of the solenoidal component of the phantom. (a) The x-y slice through the center of the 9 elements of the phantom, (b) The x-y slice through 

the center of the 9 elements of the reconstructed image, (c) Profiles in each element along the red line as example in (a). 
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(a)                                                                             (b)                                                                                   (c) 

Fig. 6. Reconstruction of the irrotational component of the phantom. (a) The x-y slice through the center of the 9 elements of the phantom, (b) The x-y slice through 

the center of the 9 elements of the reconstructed image, (c) Profiles in each element along the red line as example in (a). 
 

    
   (a)                                                                             (b)                                                                                   (c) 

Fig. 7. Reconstruction of the tensor field of the phantom [solenoidal + irrotational]. (a) The x-y slice through the center of the 9 elements of the phantom, (b) The 

x-y slice through the center of the 9 elements of the reconstructed image, (c) Profiles in each element along the red line as example in (a). 

 

2) Irrotational component 
Fig. 6 presents each element of the estimates through the 

center slice of the irrotational component for the simulated 

phantom. The projections 𝑝
𝜃

𝛽 𝛽
 acquired around three axes 

were reconstructed following the steps in Reconstruction 2. 

Profiles in Fig. 6 indicate the similarity between the 

reconstructed images and the phantom. We calculated the 𝑆𝑡 

for each reconstructed element of the reconstructions as 

listed in Table 1. The errors are small but mostly larger than 

those for the solenoidal component. 

3) Tensor field 
The reconstruction of the tensor field is obtained by 

summing the solenoidal component and the irrotational 

component. The x-y slice through the center of the 9 

elements of the reconstructions together with that of the 

phantom are given in Fig. 7. Some Gibbs artifacts are in the 

profiles because of the sharp frequency filters. The 

quantitative results in table 1 show that the errors for the 

reconstructed tensor field are small but generally larger than 

each of its solenoidal and irrotational components, except for 

Txy/Tyx and Txz/Tzx. 

B. Cardiac diffusion tensor image  

The solenoidal and irrotational component of the cardiac 

diffusion tensor field with image matrix size of 256 × 256 × 

256 were estimated from simulated projections with 

Gaussian noise added. The Gaussian noise are with zero 

mean and two different standard derivations (0.01 and 0.02). 

Summing the reconstructed solenoidal and irrotational 

components resulted in the complete tensor field. The 

reconstructions were then transformed into a matrix 

formulation of the eigenvalues and eigenvectors. The first 

principal eigenvalues for three slices are shown in Fig. 8 and 

the 𝑆𝑒  in (48) are listed in table 2. Fig. 9 gives the FA 

[calculated from (49)] for the same three slices. Also, table 3 

lists SNR results [calculated from (50)] for the reconstructed 

tensor first principal eigenvalues. In each slice, we chose a 

relatively uniform region of interest to calculate the SNR, 

which has a value range from 1.6565 to 2.5343. We can see 

more degradation in the image quality with higher noise 

level. 
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Fig. 8. First principal eigenvalue of reconstructed image with Gaussian noise SD = 0.01[solenoidal + irrotational] (left); reconstructed image with Gaussian noise 

SD = 0.02 [solenoidal + irrotational] (middle); and profiles along the red line (right).  The series of images from top to bottom are slice 78, slice 128, slice 160, 

respectively. 

 

   

   

   
 

Fig. 9. FA of reconstructed image with Gaussian noise SD = 0.01 (left); 

reconstructed image with Gaussian noise SD = 0.02 (right). The series of 

images from top to bottom are slice 78, slice 128, slice 160, respectively. 

 

Table 2. The 𝑆𝑒 for first principal eigenvalues of the cardiac diffusion tensor 

phantom 

 No noise SD=0.01 SD=0.02 

Slice 78 0.0017 0.0020 0.0033 

Slice 128 0.0017 0.0025 0.0049 

Slice 160 0.0026 0.0031 0.0058 
 

Table 3.SNR for the first principal eigenvalues of the cardiac diffusion 

tensor phantom 

 No noise SD=0.01 SD=0.02 

Slice 78 21.86 16.71 10.96 

Slice 128 22.95 17.73 13.25 

Slice 160 15.09 12.73 8.75 
 

VI. DISCUSSION 

This study provides the derivation of a new filtered back-

projection algorithm for the reconstruction of tensor fields 

from data acquired about three axes. The tensor field is 

decomposed into solenoidal and irrotational components, 

both of which have three unknown elements. Fourier 

projection theorem provides relationships between the 

Fourier transform of the directional X-ray projections and the 

Fourier transform of the solenoidal and irrotational 

components of the tensor field [37-40]. In solving for the 

Slice 78 

Slice 128 

Slice 160 

Slice 78 

Slice 160 

Slice 128 



11 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2022 

 

three unknowns in the solenoidal and irrotational component, 

new filters are formed involving coefficients of three 

equations times the characteristic ramp filter [see 

expressions before (29) and (46)]. Different from previous 

work acquiring projections about at least six [51] or three 

orthogonal axes [43], our proposed algorithm provides the 

possibility for using projections about three axes to solve the 

unknowns of the solenoidal and irrotational component 

separately. The three axes for acquiring projections 𝑝𝜃

𝜃 𝜃
 for 

the solenoidal component are the same as the three axes for 

acquiring projections 𝑝
𝜃

𝛽 𝛽
 for the irrotational component. 

All derived formulas lead to an analytical reconstruction 

algorithm for tensor field from projections acquired about 

three axes. 

A. Summary of results  

The proposed algorithm provides estimates of a total of 6 

unknowns, 3 for the solenoidal and 3 for the irrotational 

component of the tensor field. Two phantoms were used to 

evaluate our algorithm. One was a numerical phantom with 

no special imaging modality in mind from which we could 

test our algorithm. Potential values were assigned to the 

solenoidal and irrotational components. The calculation of 

the partial derivatives formed tensor elements with two 

spherical surfaces with interior and background equal to 

zero. We choose the particular tensor field to evaluate the 

algorithm performance; in particular, to evaluate the 

algorithm performance of potential Gibbs artifacts at sharp 

boundaries. If one wants to interpret the phantom for a 

particular imaging modality, such as X-ray dark field 

imaging, one might construe the phantom to be two spherical 

surfaces that are imbedded in a uniform background of 

material with microstructure having anisotropic small angle 

scatter at the boundary of the surfaces but virtually no 

anisotropic small angle scatter in the background material, 

only isotropic scatter that attenuates the signal with no 

anisotropic structure. We see in Fig. 5-7 that the algorithm 

gives reconstructed results, where at the boundary of the 

spherical surfaces there are undershoots and overshoots of 

reconstructed values compared to the original phantom 

values. The second phantom was a cardiac diffusion tensor 

field that was obtained by scanning a normal excised human 

heart on a 1.5 T GE CV/I MRI Scanner (GE Medical System, 

Waukesha, WI). Transforming the tensor matrix to its 

diagonal form provides a singular value decomposition with 

singular values (eigenvalues), which specify the principal 

eigenvector with potentially positive and negative elements 

that one could consider in the first phantom provide the 

principal direction of the scatter and in the second phantom 

provide the principal direction of the diffusion relative to the 

Cartesian coordinate system in Fig. 1. In Fig. 8 the 

eigenvalues, determined from the reconstructed tensor field 

of the cardiac diffusion tensor phantom, have larger errors in 

the reconstruction when noise is added to the projections. 

These errors are demonstrated better in the FA images in Fig. 

9. Our calculations of the signal to noise ratio (SNR) for the 

first principal eigenvalues (table 3) ranged between 9 and 18, 

which is low but in line with what one would expect in a 

single MR-DTI with typical values of 15:1 to 30:1 [52]. It is 

likely that the noise in the original cardiac tensor image is 

amplified with the addition of noise in the projections as 

shown in table 2.  

B. X-ray and Radon projections of tensor fields  

Our work in this paper focused on developing a filtered 

backprojection algorithm for reconstructing longitudinal and 

transverse X-ray projections, in the same way reconstruction 

algorithms can be developed for Radon projections of second 

rank tensor fields [36, 40, 44, 53-55]. To illustrate the 

differences between X-ray and Radon projections, let 𝑥 =

(𝑥, 𝑦, 𝑧) be a point in ℜ3 and let the components 𝑡𝑖𝑗(𝑥) of a 

second rank symmetric tensor field 𝑇(𝑥)  be real, rapidly 

decreasing 𝐶∞ functions defined on ℜ3. For the tensor field 

𝑇(𝑥), the 3D directional X-ray transform of 𝑇(𝑥) is defined 

by 𝑝𝜃

𝑎 𝑏
(𝑠; 𝜃) = ∫ 𝑎𝑇𝑇(𝑠 + 𝑙𝜃)𝑏

ℜ
𝑑𝑙 , and the 3D directional 

Radon transformation of 𝑇(𝑥)  is defined by 𝑟𝜃
𝑎 𝑏

(𝑡; 𝜃) =

∫ 𝑎𝑇𝑇(𝑥)𝑏𝛿(𝑥 ⋅ 𝜃 − 𝑡)𝑑𝑥
ℜ3 . These are scalar projection 

measurements in the direction of 𝜃 formed by the product of 

the tensor 𝑇 with the three-dimensional unit vectors 𝑎 and 𝑏. 

For this work we focus primarily on the X-ray scalar 

projection measurements of the tensor field for vectors 𝑎 and 

𝑏  equal to combinations of the orthogonal vectors 𝜃 =
(𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜃)𝑇 , 𝛼 = (−𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜙, 0)𝑇 and 

𝛽 = (−𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙,−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙, 𝑠𝑖𝑛𝜃)𝑇 in developing a 

filtered backprojection reconstruction algorithm. In this paper 

we demonstrate that there is indeed a reconstruction 

algorithm for transvers reconstruction tomography for a 

general tensor field using data from only three rotation axes. 

The method first performs a slice-by-slice reconstruction of 

six functions by two-dimensional backprojection and filter 

methods. The components of tensor field are related to these 

functions by a linear operator with coefficients that are 

rational functions of the Fourier transform variables.  

C. Solution for three orthogonal axes  

It has been shown in other work [42, 55] that three 

orthogonal chosen directions are sufficient for reconstruction 

of a tensor field. It has also been shown [33, 34, 36] that three 

orthogonal axes are sufficient for a full recovery of a vector 

field from slice-by-slice vector field tomography. In [33] an 

efficient mollifier method was proposed for three-

dimensional vector tomography problem. The mollifier 

method originally proposed by Louis in 1990 [56] is seen 

throughout his group’s work [35, 36, 44] and provides an 

approximate solution to a continuous inverse problem which 

one might see very similar to the determination of a 

regularized solution in the implementation of discrete 

Bayesian reconstruction methods. For the tensor tomography 

problem there is the longitudinal projection in additional to a 

transverse projection [34, 43] needed for every projection 

angle to solve for the 6 unknown tensor elements, whereas 

only one longitudinal projection for each angle is required 
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for the vector tomography problem. For stability it is 

proposed that 3 orthogonal axes are needed to recover vector 

fields and 6 orthogonal axes are needed to recover tensor 

fields [34]. Different from these works, our filtered 

backprojection algorithm uses longitudinal and transverse 

projections about three orthogonal axes to solve the 

unknowns of the solenoidal and irrotational component 

separately. 

D. Helmholtz decomposition  

1) Unbounded domains 
It was shown by Sharafutdinov in [47], that a smooth 

symmetric tensor field which vanishes rapidly at infinity can 

be decomposed in a unique way as 𝑡𝑖𝑗(𝑥) = 𝑡𝑖𝑗
𝑆 (𝑥) +

1

2
(𝜕𝑖𝜑𝑗(𝑥) + 𝜕𝑗𝜑𝑖(𝑥)) where 𝜑(𝑥) is a vector potential and 

𝑇𝑆(𝑥)  is a symmetric solenoidal tensor field, which is 

divergence free: ∑ 𝜕𝑖𝑡𝑖𝑗
𝑆 (𝑥)𝑖 = ∑ 𝜕𝑗𝑡𝑖𝑗

𝑆 (𝑥)𝑗 = 0 . Here we 

considered a similar decomposition of a symmetric tensor field 

T: 𝑇(𝑥) = 𝑇𝛹
𝑆(𝑥) + 𝑇𝛷

𝐼 (𝑥), where the symmetric divergent-

free solenoidal component 𝑇𝛹
𝑆(𝑥)  is the curl of a tensor 

potential, 𝑇𝛹
𝑆(𝑥) = 𝛻 × 𝛹(𝑥) , and the symmetric irrotational 

component 𝑇𝛷
𝐼 (𝑥)  is the gradient of a vector potential, 

𝑇𝛷
𝐼 (𝑥) = 𝛻𝛷(𝑥) + [𝛻𝛷(𝑥)]𝑇 [37]. This formulation provides 

a parameterization of the solenoidal and irrotational 

components each by three scalar functions [(9), (12), and 

Appendix]. This combines the results of Sharafutdinov [47] 

with that of the Helmholtz decomposition [57] for vector fields 

where the solenoidal component is the curl of a vector 

potential and the irrotational component is the gradient of a 

scalar potential. We showed in this paper a solution for the 

solenoidal and irrotational components involves a 

reconstruction using the Fourier filter backprojection 

algorithm. Another example of decomposing tensor fields 

into solenoidal and irrotational components to solve for both 

the tensor elements and potentials is presented in [44]. A 

solution on general differential manifolds is presented in [41] 

providing an explicit inverse formula for reconstruction of 

the solenoidal component of a second rank tensor field from 

projections acquired about three axes. Different from these 

decompositions is the singular value decomposition of a 

dynamic acquisition of 2-tensors in ℝ2  used to solve the 

inverse of the dynamic tensor projections [58]. This is to our 

knowledge the first application of tensor tomography to a 

dynamic acquisition of tensor projections.  

2) Bounded domains  
The application of our algorithm to bounded domains is an 

interesting study. The early work related to vector field 

tomography on bounded domains resulted in several papers 

[22, 24, 25, 59]. Specifically, Braun and Hauck [24] 

recognized that bounded domains admit harmonic vector 

fields that are both irrotational and solenoidal. Therefore, the 

decomposition into irrotational and solenoidal components is 

not unique. In their paper, they proposed that the 

decomposition should be 𝑉 = 𝑉𝑆 + 𝑉𝐼 + 𝑉𝐻 , where 𝑉𝑆 =
∇ × Ψ , 𝑉𝐼 = ∇Φ, and 𝑉𝐻 is the harmonic component of the 

vector field satisfying ∇𝑇𝑉𝐻 = 0  and ∇ × 𝑉𝐻 = 0 . The 

solenoidal component 𝑉𝑆 is homogeneous in the sense that 

the normal component of 𝑉𝑆 is zero on the boundary and is 

totally tangential to the boundary. The curl-free component 

𝑉𝐼 is homogenous in the sense that the tangential component 

of 𝑉𝐼 vanishes on the boundary and is exactly normal to the 

boundary. If these Neuman boundary conditions for vector 

fields are satisfied, then fewer scalar projections are required. 

A complete summary of work since these early days related 

to vector tomography can be found in [35]. For tensor 

tomography Louis [36] claimed that the reconstruction on a 

bounded domain has no unique solution, but claimed the 

solenoidal part can be uniquely determined because it is 

overdetermined. Recent work of McGraw [60] shows how 

the decomposition of the tensor field on a bounded domain 

provides a solenoidal and irrotational component with an 

addition of a homogeneous component. The generalized 

Helmholtz decomposition on bounded domain is given by 

𝐷𝑖𝑗 = 𝜕𝑖𝜙𝑗 + 𝜀𝑖𝑚𝑛(𝜕𝑚𝜓𝑛𝑗) + 𝐻𝑖𝑗 , where the harmonic 

tensor field, [𝐻𝑖𝑗], is both solenoidal and irrotational and 

typically is of small magnitude [60, 61]. The paper by 

McGraw [61] gives some visual examples of the 

decomposition of tensor fields where it is shown that the 

harmonic component is a constant background of low 

intensity.  
In our work we took the approach of Sharafutdinov [47] 

and assumed that the tensor field that we are reconstructing 

is a sufficiently smooth symmetric tensor field which 

vanishes rapidly at infinity. We recognize that this may be a 

stretch if applied to medical images such as the heart where 

there can be sharp contrast at organ boundaries that may 

produce background artifacts. Our cardiac diffusion tensor 

field was obtained from an MR imaging experiment and thus 

may not have a unique decomposition, whereas the 

numerical phantom of the two spherical surfaces was 

designed to have a unique decomposition of the solenoidal 

and irrotational components by constructing the phantom as 

the sum of a particular solenoidal and irrotational 

components. For the reconstruction of the cardic diffusion 

tensor field some of the mismatch between the results and the 

the original tensor field may be a harmonic tensor field of 

small magintude. We speculate that the same would be true 

for the reconstruction of a tensor field on a bounded domain, 

i.e., using our decomposition and algorithm would result in 

a non-uniqueness (missing part) of a constant homogeneous 

background of low intensity.   

Work in vector tomography has also shown that if the 

constant attenuator of the scalar projections is known, then 

only longitudinal scalar projections in the direction of the 

projection angle [62] are required to reconstruct the vector 

field. Later Natterer [63] showed that transverse scalar 

projections would only be required; however, in practice 

these measurements can be difficult to acquire. Previously 

we investigated this for vector [64] and tensor [65] fields by 

simulating attenuated projections of scalar measurements 

around one orbit. The results indicated that the elements of 

the vectors are recovered, whereas components of the tensor 

field are not fully recovered. 
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E. X-ray dark field imaging  

1) X-ray tensor tomography (XTT) 
Of particular interest to us is the application of tensor 

tomography in X-ray dark-field imaging of fiber orientation 

in tissue. The X-ray tensor tomography (XTT) method [8, 

66] divides the reconstruction of tensor fields into two steps: 

first to reconstruct coefficients of a Cartesian vector 

representation at each voxel; and then fit the estimated vector 

coefficients to an ellipsoidal representation of the second 

rank tensor at each voxel. The forward model represents the 

small angle scatter as the discrete supposition of the 

anisotropic scatter signal, much like the Beer–Lambert 

model for the X-ray attenuation signal [66]. Vogel et al. [67] 

formulated the reconstruction of the ellipsoidal 

representation of the fixed basis set of vectors as a regular 

inverse problem whereby an iterative reconstruction 

algorithm is used to estimate vector coefficients constrained 

by an ellipsoidal function. Iterative approaches have 

advantages in addition to modeling noise, to provide 

constraints on the solution. A Bayesian approach adding 

constraints to XTT was pursued by [68] who proposed a cost 

function with regularization to iteratively reconstruct 

simultaneously attenuation, phase, and scatter images (with 

independent penalty functions) from differential phase 

contrast acquisitions, without the need of phase retrieval. In 

our work we performed simulations evaluating the model of 

[8, 67] with the reconstruction of coefficients for a fixed 

basis set of 7 vectors. The coefficients were reconstructed 

from Moiré fringe analysis of single-exposure dark field 

projections obtained from X-ray bi-prism interferometry 

[69]. Wieczorek et al. [12] modified the forward model [8, 

67] to develop an anisotropic X-ray dark field tomography 

(AXDT) method by replacing the discretization of the 

scattering function as a fixed basis set of vectors at each 

voxel with a spherical harmonic expansion. They 

demonstrated signific differences in the results between XTT 

and AXDT in the small angle scatter indicating that the 

spherical harmonic approach may be a more general 

representation of the small angle scatter than the tensor 

approach. Early on a differ forward model was proposed by 

Bayer et al. [9] where instead of a vector basis expansion; the 

isotropic scatter contribution, the anisotropic scatter 

contribution, and the in-plane scatter angel was modeled 

using a sinusoidal expansion where coefficients were 

reconstructed from X-ray dark field projections using 

Talbot-Lau grating interferometry. More recently, Kim et al. 

[14] proposed the use of a periodic array of multi-circular 

gratings for Talbot-Lau interferometry instead of linear 

gratings to capture 2D-omnidirectional X-ray scattering 

signals within a single projection shot, removing the 

necessity of rotation of the sample relative to the gradient 

alignment. In this work vector coefficients were 

reconstructed following the model of Malecki et al. [8, 66]. 

 

2) Reciprocal space representation of X-ray scatter  
Other groups investigated the possibility of directly 

reconstructing a q-vector representation of reciprocal space 

as a measure of the small angle scatter (SAXS) from direct 

dark field measurements using X-ray raster scanning [10, 

11]. The use of raster scanning to measure small angel X-ray 

scattering (SAXS) is a valuable imaging technique to obtain 

which q-vectors are probed for each projection. A virtual 

tomography axis is presented where projection-dependent 

rotation matrix describes the relationship between laboratory 

and sample coordination systems. Schaff et al [13] later 

investigated the possibility of instead of using raster 

scanning, using XTT data obtained from Talbot-Lau X-ray 

grating interferometry to fit models of reciprocal space 

representation of small angle scatter. Ellipsoids are fit to the 

reconstructed results. As with the use of spherical harmonics 

in real space representation of scatter, spherical harmonics 

were also used for the basis representation of q-vectors in 

reciprocal-space modeling of small angle scatter from data 

obtained with X-ray raster scanning [10, 70]. To improve the 

speed of the reconstruction, a fast iterative backprojection 

reconstruction algorithm [46] was designed to directly 

reconstruct elements of a second rank tensor. This was the 

first tensor tomography approach to directly reconstruct 

elements of a second rank tensor representation of small 

angle scatter from dark field projections. The tensor 

representation of the projections was transverse 

corresponding to the direction of the sensitivity of the 

gratings.  

 

3) Scatter as a tensor  
In many of these approaches the question arises as to 

whether sufficient data is obtained to uniquely reconstruct 

the coefficients of the models used to represent the small 

angle scatter. We know from our work presented in this paper 

with that of using a filter backprojection algorithm, 3 

orthogonal axes obtaining 6 sets of projections provide 6 

independent equations to solve for the 6 unknows of a tensor 

representation of small angle scatter. However, specific 

orientation dependence of small angle scatter and the non-

linear function of the underlying anisotropic mass 

distribution brings into question as to whether a tensor 

representation is a correct model of the anisotropic small 

angel scatter [15]. Graetz [15] investigated whether two 

approximative linear tensor models with reduced orientation 

dependence were applicable models of small angle scatter for 

grating based X-ray or neutron dark-field tensor tomography. 

Simulations verified that in using tomographic applications 

with full sampling over a sphere, these linear tensor models 

can recover orientations up to a statistical accuracy on the 

scale of 1°. However, if the tensor representation was 

reconstructed using only a minimal set of three circular 

acquisition trajectories, principal orientations for isolated 

volume elements could still be recovered to a statistical 

accuracy of 5° to 10°.  

F. Magnetic resonance imaging  

1) Diffusion tensor magnetic resonance imaging 
(DT-MRI)  

The application of tensor tomography in MR diffusion 

tensor imaging is more in question as to its applicability since 

most of MRI acquisition schemes (protocols, pulse 

sequences) acquire data that directly map Fourier space 

requiring no tomography, only an inverse 2D or 3D Fourier 
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transform to directly obtain the real space image. Even more 

changeling is the work in the last two decades in developing 

better diffusion models for brain tractography – where the 

brain covers a wide range of spatial scale of anatomy from 

global structure of white matter fiber tracts to microstructure 

of axons – that go beyond the tensor representation [71, 72]. 

Some of these methods are modification of the diffusion 

tensor model; here we present three examples: 1) Neurite 

Orientation Dispersion and Density Imaging (NODDI) 

distinguishes between intracellular, extracellular, and 

cerebrospinal fluid (CSF) compartments by assuming the 

diffusion signal is the sum of diffusion signals from multiple 

compartments [73]. Multi-compartment models are limited 

in modeling bending and fanning fiber configurations in a 

voxel and in determining the correct number of 

compartments [74]. 2) Diffusion Kurtosis imaging (DKI) is 

another class of methods aimed at using a fiber orientation 

distribution function (fODF) [75] to estimate a fiber 

orientation which is important for tractography and 

connective analysis by way of a diffusion orientation 

function (dODF). DKI is a statistical measure of the 

deviation from a Gaussian distribution [which is the assumed 

distribution for diffusion tensor imaging (DTI)], and thus, 

DKI provides a significantly more complete characterization 

of water diffusion and tissue structure. This technique is 

largely based on the same type of pulse sequences employed 

for DTI, but DKI requires multishell diffusion MRI (dMRI) 

at higher b values than those conventionally utilized for DTI 

analysis. 3) Q-space diffeomorphic reconstruction (QSDR). 

Other limitations of DTI relate to its inability to 

independently resolve crossing fibers and sensitivity to 

partial volume effects (PVE) as in studies using dODF to 

characterize the diffusion distribution. To overcome these 

effects, the spin distribution function (SDF) can be obtained 

from generalized Q-sampling imaging (GQI), where SDF 

represents the proportion of spins undergoing diffusion in 

different orientations. Notice this is like the case with 

developing models of X-ray small angle scatter, 

investigation of reciprocal space to obtain a q-space 

representations of small angle scatter in tissue as a better 

model of small angle scatter than a tensor representation. Q-

space diffeomorphic reconstruction calculates the 

transformed SDFs in any given deformation field that 

satisfies diffeomorphism. To overcome some of these 

problems Karimi et al [71] proposed to learn a direct 

mapping between the diffusion measurements in the q-space 

and the target fODF by using deep neural networks to learn 

the relationship between the DW-MRI signal and the fiber 

orientation distribution. The estimation of an fODF, on the 

other hand is sensitive to noise and prone to predicting false 

fibers, while other possible methods such as diffusion 

spectrum imaging (DSI) require a very large number of 

measurements that can lead to unrealistic scan times.  

 

2) Diffusion tensor tomography magnetic resonance 
imaging (DTT-MRI)   

Our previous work focused on developing diffusion tensor 

tomography magnetic resonance imaging (DTT-MRI) for the 

heart; one the most difficult organs to perform MR diffusion 

tensor imaging (MR-DTI) due to motion and the length of 

time required to obtain adequate images. For ex vivo samples 

we have acquired images for up to 12 hours on 3T small 

animal systems [76]. It can take a long time to acquire an MR 

diffusion tensor image of the heart with sufficient signal to 

noise, making it impractical for human imaging, though 

recent imaging times have significantly improved [19, 77-

79]. For this reason, in our previous attempts to measure the 

heart fiber structure required in constructing mechanical 

models of the heart, we investigated ways of reducing the 

number of measurements (pulse repetitions), such as 

measuring and reconstructing only the principal eigenvectors 

in order to reduce the acquisition times but to provide some 

structural information of cardiac fiber structure [80]. With 

the hope that the heart fiber structure could be specified from 

its solenoidal tensor field, we also performed simulations of 

reconstructing solenoidal and irrotational images of a 

numerical helical heart phantom (representing a section of 

the mid-ventricular wall of the left ventricle) from scalar 

Radon projections (note: not X-ray projections) of the 

phantom [53]. Sampling projections around a single axis, we 

found Radon projections 𝑟̃𝜃
𝛼 𝛼

,  𝑟̃
𝜃

𝛼 𝛽
, and 𝑟̃

𝜃

𝛽 𝛽
 were needed 

for each projection 𝜃 to reconstruct the three unknowns in 

the solenoidal tensor field and Radon projections 𝑟̃𝜃
𝜃 𝜃

,  𝑟̃𝜃
𝜃 𝛼

, 

and 𝑟̃
𝜃

𝜃 𝛽
 were needed to reconstruct the three unknowns in the 

irrotational component of the tensor field  [53]. In this work, 

we found that a realistic model of the helical fiber structure 

of the myocardial tissue specifies a diffusion tensor field for 

which the first principal vector (the vector associated with 

the maximum eigenvalue) of the solenoidal component 

accurately approximates the first principal vector of the 

diffusion tensor.  

G. Summary  

The second, third, and fourth rank tensors describe a wide 

range of physical phenomena with potential imaging 

applications. Second rank tensors are used to represent 

diffusivity [81], mechanical stress and strain [82], 

electromagnetic quantities [83] and physics related to gravity 

[84]. Third rank tensors have been used to describe the 

apparent bidirectional reflectance distribution function 

(BRDF) in face relighting applications [85]. Fourth rank 

tensors can approximate the diffusivity function from the 

DW-MRI data guaranteeing the symmetric positive-definite 

property [75].  Other applications include, X-ray strain 

imaging of crystals, specifically inverting the transverse ray 

transform of the projections of the diffraction pattern [51], 

neutron strain imaging of crystals [51, 86], photoelasticity 

strain imaging of crystals [87], travel time seismology 

studying the inner structure of the earth to determine the 

anisotropic index of refraction of the medium involving the 

mathematical challenge of determining a symmetric second 

rank tensor Riemannian metric from its integrals along 

geodesics [88-90], neutron tomography of magnetic vector 

fields in bulk materials [91], optical tomography of dielectric 

tensors [92], tomographical imaging of electrical and 
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magnetic sources in brain and heart [93, 94], and tissue 

magnetic susceptibility tensor MR imaging [95].  

In our previous work we performed simulations evaluating 

the reconstruction of the coefficients for a fixed basis set of 

7 vectors from Moiré fringe analysis of projections of a 

single-exposure of dark field scatter obtained from X-ray bi-

prism interferometry [69]. To obtain a tensor representation 

would have involved performing a second step of fitting the 

estimated vector coefficients to an ellipsoidal representation 

of the tensor at each voxel [8, 67]. In our simulations of this 

previous work, we used a wave optics approach to simulate 

the projections; whereas, in the present work we did not 

simulate a specific imaging modality but evaluated our 

filtered backprojection algorithm by numerically 

approximating the projections of a generic numerical tensor 

field and a diffusion tensor field of an excised human heart. 

Our future interests involve developing algorithms to 

directly reconstruct the tensor representation of small angle 

scatter using X-ray bi-prism interferometry [96]. This 

interest is heightened by the fact that from the work of [15] 

it is appropriate to represent small angle scatter as a second 

rank tensor. 

VII. CONCLUSION 

We proposed a new filtered backprojection reconstruction 

algorithm to reconstruct tensor fields from projections 

acquired around three axes. Using a tensor field 

decomposition and Fourier projection theorem, we 

established relationships between the Fourier transform of 

the directional X-ray projection measurements and the 

Fourier transform of the solenoidal and irrotational 

components of the tensor field. The filters were then derived 

based on the property of the decomposition being non-

irrotational for the directional X-ray transform of the tensor 

around some axes. Thus, the decomposition of the tensor 

field into solenoidal and irrotational components provides 

insight into the development of algorithms for the 

reconstruction of tensor fields with sufficient samples of 

directional projections and the necessary orbits for 

acquisition of the projections of the tensor field.  

REFERENCES 

[1] J. Tromp, C. Tape, and Q. Liu, "Seismic tomography, 
adjoint methods, time reversal and banana-
doughnut kernels," Geophysical Journal 
International, vol. 160, no. 1, pp. 195-216, 2005. 

[2] F. Hofmann et al., "Nano-scale imaging of the full 
strain tensor of specific dislocations extracted from 
a bulk sample," Physical Review Materials, vol. 4, 
no. 1, p. 013801, 2020. 

[3] G. P. Paternain, M. Salo, and G. Uhlmann, "Tensor 
tomography on surfaces," Inventiones 
Mathematicae, vol. 193, no. 1, pp. 229-247, 2013. 

[4] A. L. Alexander, J. E. Lee, M. Lazar, and A. S. Field, 
"Diffusion tensor imaging of the brain," 
Neurotherapeutics, vol. 4, no. 3, pp. 316-329, 2007. 

[5] H. Einarsdóttir et al., "Computer-aided diagnosis of 
pulmonary diseases using x-ray darkfield 
radiography," Physics in Medicine and Biology, vol. 
60, no. 24, p. 9253, 2015. 

[6] T. Baum et al., "X-ray dark-field vector 
radiography—a novel technique for osteoporosis 
imaging," Journal of Computer Assisted 
Tomography, vol. 39, no. 2, pp. 286-289, 2015. 

[7] S. T. Taba, T. E. Gureyev, M. Alakhras, S. Lewis, D. 
Lockie, and P. C. Brennan, "X-ray phase-contrast 
technology in breast imaging: principles, options, 
and clinical application," American Journal of 
Roentgenology, vol. 211, no. 1, pp. 133-145, 2018. 

[8] A. Malecki et al., "X-ray tensor tomography," 
Europhysics Letters, vol. 105, no. 3, p. 38002, 2014. 

[9] F. L. Bayer et al., "Reconstruction of scalar and 
vectorial components in X-ray dark-field 
tomography," Proceedings of the National 
Academy of Sciences of the United States of 
America, vol. 111, no. 35, pp. 12699-704, 2014. 

[10] M. Liebi et al., "Nanostructure surveys of 
macroscopic specimens by small-angle scattering 
tensor tomography," Nature, vol. 527, no. 7578, pp. 
349-352, 2015. 

[11] F. Schaff et al., "Six-dimensional real and reciprocal 
space small-angle x-ray scattering tomography," 
Nature, vol. 527, no. 7578, pp. 353-356, 2015. 

[12] M. Wieczorek, F. Schaff, F. Pfeiffer, and T. Lasser, 
"Anisotropic x-ray dark-field tomography: A 
continuous model and its discretization," Physical 
Review Letters, vol. 117, no. 15, p. 158101, 2016. 

[13] F. Schaff, F. Prade, Y. Sharma, M. Bech, and F. 
Pfeiffer, "Non-iterative directional dark-field 
tomography," Scientific Reports, vol. 7, no. 1, pp. 1-
9, 2017. 

[14] J. Kim, M. Kagias, F. Marone, and M. Stampanoni, 
"X-ray scattering tensor tomography with circular 
gratings," Applied Physics Letters, vol. 116, no. 13, 
p. 134102, 2020. 

[15] J. Graetz, "Simulation study towards quantitative X-
ray and neutron tensor tomography regarding the 
validity of linear approximations of dark-field 
anisotropy," Scientific Reports, vol. 11, no. 1, pp. 1-
11, 2021. 

[16] M. J. Moulton, B. D. Hong, and T. W. Secomb, 
"Simulation of left ventricular dynamics using a 
low-order mathematical model," Cardiovascular 
Engineering and Technology, vol. 8, no. 4, pp. 480-
494, 2017. 

[17] M. Froeling, G. J. Strijkers, A. J. Nederveen, S. A. 
Chamuleau, and P. R. Luijten, "Diffusion tensor MRI 
of the heart – In vivo Imaging of myocardial fiber 
architecture," Current Cardiovascular Imaging 
Reports, vol. 7, no. 7, p. 9276, 2014. 

[18] A. Das et al., "The effect of microvascular 
obstruction on the myocardial microstructure: a 



16 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2022 

 

diffusion tensor imaging study," European Heart 
Journal-Cardiovascular Imaging, vol. 22, no. 
Supplement_1, p. jeaa356. 323, 2021. 

[19] S. R. Watson, J. D. Dormer, and B. Fei, "Imaging 
technologies for cardiac fiber and heart failure: a 
review," Heart Failure Reviews, vol. 23, no. 2, pp. 
273-289, 2018. 

[20] V. Talman and H. Ruskoaho, "Cardiac fibrosis in 
myocardial infarction—from repair and remodeling 
to regeneration," Cell and Tissue Research, vol. 365, 
no. 3, pp. 563-581, 2016. 

[21] D. M. Kramer and P. C. Lauterbur, "On the problem 
of reconstructing images of non-scalar parameters 
from projections. Application to vector fields," IEEE 
Transactions on Nuclear Science, vol. 26, no. 2, pp. 
2674-2677, 1979. 

[22] S. J. Norton, "Tomographic reconstruction of 2-D 
vector fields: application to flow imaging," 
Geophysical Journal International, vol. 97, no. 1, pp. 
161-168, 1989. 

[23] K. B. Winters and D. Rouseff, "A filtered 
backprojection method for the tomographic 
reconstruction of fluid vorticity," Inverse Problems, 
vol. 6, no. 4, p. L33, 1990. 

[24] H. Braun and A. Hauck, "Tomographic 
reconstruction of vector fields," IEEE Transactions 
on Signal Processing, vol. 39, no. 2, pp. 464-471, 
1991. 

[25] S. J. Norton, "Unique tomographic reconstruction 
of vector fields using boundary data," IEEE 
Transactions on Image Processing, vol. 1, no. 3, pp. 
406-412, 1992. 

[26] S. Juhlin, "Doppler tomography," in Proceedings of 
the 15th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Societ, 
1993, pp. 212-213: IEEE. 

[27] G. Sparr, K. Strahlen, K. Lindstrom, and H. W. 
Persson, "Doppler tomography for vector fields," 
Inverse Problems, vol. 11, no. 5, p. 1051, 1995. 

[28] A. Denisov, A. Popov, and V. Sterlyadkin, "Doppler 
tomography problem for a two-dimensional vector 
field," Moscow University Computational 
Mathematics Cybernetics, vol. 1, pp. 17-20, 1995. 

[29] L. Desbat and A. Wernsdorfer, "Direct algebraic 
reconstruction and optimal sampling in vector field 
tomography," IEEE Transactions on Signal 
Processing, vol. 43, no. 8, pp. 1798-1808, 1995. 

[30] J. L. Prince, "Convolution backprojection formulas 
for 3-D vector tomography with application to 
MRI," IEEE Transactions on Image Processing, vol. 
5, no. 10, pp. 1462-1472, 1996. 

[31] G. Sparr and K. Stråhlén, "Vector field tomography: 
an overview," IMA Volumes in Mathematics its 
Applications Computational Radiology Imaging: 
Therapy and Diagnostic, vol. 110, 1998. 

[32] T. Schuster, "The 3D Doppler transform: 

elementary properties and computation of 
reconstruction kernels," Inverse Problems, vol. 16, 
no. 3, pp. 701-723, 2000. 

[33] T. Schuster, "An efficient mollifier method for 
three-dimensional vector tomography: 
convergence analysis and implementation," 
Inverse Problems, vol. 17, no. 4, pp. 739-766, 2001. 

[34] V. Sharafutdinov, "Slice-by-slice reconstruction 
algorithm for vector tomography with incomplete 
data," Inverse Problems, vol. 23, no. 6, p. 2603, 
2007. 

[35] T. Schuster, Mathematical methods in biomedical 
imaging and intensity-modulated radiation 
therapy (IMRT). volume 7 of Publications of the 
Scuola Normale Superiore, CRM Series, 20 Years of 
imaging in vector field tomography: a review, 2008. 

[36] A. K. Louis, S. V. Maltseva, A. P. Polyakova, T. 
Schuster, and I. E. Svetov, "On solving the slice-by-
slice three-dimensional 2-tensor tomography 
problems using the approximate inverse method," 
Journal of Physics Conference Series, vol. 1715, no. 
1, p. 012036, 2021. 

[37] G. T. Gullberg, R. D. Ghosh, G. L. Zeng, A. Alexander, 
and D. Parker, "Tensor tomography," IEEE 
Transactions on Nuclear Science, vol. 46, no. 4, pp. 
991-1000, 1999. 

[38] G. Gullberg and M. Defrise, "Three-dimensional 
tomography for vector and tensor fields," in 
Proceedings of the 1999 International Meeting on 
Fully Three-Dimensional Image Reconstruction in 
Radiology and Nuclear Medicine, 1999, pp. 369-
372. 

[39] G. Gullberg, M. Defrise, V. Panin, and G. Zeng, 
"Backprojection filtering algorithms for 
reconstruction of vector and second order tensor 
fields," in 2000 IEEE Nuclear Science Symposium. 
Conference Record (Cat. No. 00CH37149), 2000, vol. 
2, pp. 15/277-15/281 vol. 2: IEEE. 

[40] M. Defrise and G. T. Gullberg, "3D reconstruction of 
tensors and vectors," Office of Scientific & Technical 
Information Technical Reports, 2005. 

[41] A. Denisjuk, "Inversion of the x-ray transform for 3D 
symmetric tensor fields with sources on a curve," 
Inverse Problems, vol. 22, no. 2, pp. 399-411, 2006. 

[42] W. Lionheart and V. Sharafutdinov, "Reconstruction 
algorithm for the linearized polarization 
tomography problem with incomplete data," 
Contemporary Mathematics, vol. 14, p. 137, 2009. 

[43] N. M. Desai and W. Lionheart, "An explicit 
reconstruction algorithm for the transverse ray 
transform of a second rank tensor field from three 
axis data," Inverse Problems, vol. 32, no. 11, p. 
115009, 2016. 

[44] E. Y. Derevtsov, A. Louis, S. Maltseva, A. Polyakova, 
and I. Svetov, "Numerical solvers based on the 
method of approximate inverse for 2D vector and 



17 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2022 

 

2-tensor tomography problems," Inverse Problems, 
vol. 33, no. 12, p. 124001, 2017. 

[45] R. Bammer, S. J. Holdsworth, W. B. Veldhuis, and S. 
T. Skare, "New methods in diffusion-weighted and 
diffusion tensor imaging," Magnetic Resonance 
Imaging Clinics of North America, vol. 17, no. 2, pp. 
175-204, 2009. 

[46] Z. Gao, M. Guizar-Sicairos, V. Lutz-Bueno, A. Schrter, 
and M. Georgiadis, "High-speed tensor 
tomography: iterative reconstruction tensor 
tomography (IRTT) algorithm," Acta 
Crystallographica, vol. 75, no. 2, pp. 223-238, 2019. 

[47] V. A. Sharafutdinov, "Integral geometry of tensor 
fields," Inverse and Ill-posed Problems Series, 1994. 

[48] G. R. Wang, "A Cramer rule for minimum-norm (T) 
least-squares (S) solution of inconsistent linear 
equations," Linear Algebra & Its Applications, vol. 
74, pp. 213-218, 1986. 

[49] H. Stark, J. Woods, I. Paul, and R. Hingorani, "Direct 
Fourier reconstruction in computer tomography," 
IEEE Transactions on Acoustics, Speech, and Signal 
Processing, vol. 29, no. 2, pp. 237-245, 1981. 

[50] D. Rohmer, A. Sitek, and G. T. Gullberg, 
"Reconstruction and visualization of fiber and 
laminar structure in the normal human heart from 
ex vivo DTMRI data," Investigative Radiology, vol. 
42, no. 11, pp. 777-789, 2007. 

[51] W. Lionheart and P. J. Withers, "Diffraction 
tomography of strain," Inverse Problems, vol. 31, 
no. 4, p. 045005, 2015. 

[52] P. B. Kingsley, "Introduction to diffusion tensor 
imaging mathematics: Part III. Tensor calculation, 
noise, simulations, and optimization," Concepts in 
Magnetic Resonance Part A, vol. 28A, no. 2, pp. 
155-179, 2006. 

[53] G. T. Gullberg, M. Defrise, V. Y. Panin, and G. L. Zeng, 
"Efficient cardiac diffusion tensor MRI by three-
dimensional reconstruction of solenoidal tensor 
fields," Magnetic Resonance Imaging, vol. 19, no. 2, 
pp. 233-256, 2001. 

[54] E. Y. Derevtsov and I. Svetov, "Tomography of 
tensor fields in the plain," Eurasian Journal of 
Mathematical and Computer Applications, vol. 3, 
no. 2, pp. 24-68, 2015. 

[55] A. Polyakova and B. Hahn, "A solution of the 
dynamic two-dimensional 2-tensor tomography 
problem using the SVD-method," Frontier in 
Mathematics Computer Science, vol. 12, p. 82, 
2020. 

[56] A. K. Louis and P. Maass, "A mollifier method for 
linear operator equations of the first kind," Inverse 
Problems, vol. 6, no. 3, p. 427, 1990. 

[57] G. B. Arfken and H.-J. Weber, Mathematical 
methods for physicists. Academic Press Harcourt 
Brace Jovanovich, San Diego, 1967. 

[58] A. Polyakova and I. Svetov, "The singular value 

decomposition of the dynamic ray transforms 
operators acting on 2-tensor fields in ℝ2," in 
Journal of Physics: Conference Series, 2021, vol. 
1715, no. 1, p. 012040: IOP Publishing. 

[59] N. F. Osman and J. L. Prince, "3D vector tomography 
on bounded domains," Inverse Problems, vol. 14, 
no. 1, p. 185, 1998. 

[60] T. McGraw, T. Kawai, I. Yassine, and L. Zhu, "New 
scalar measures for diffusion-weighted MRI 
visualization," in International Symposium on 
Visual Computing, 2009, pp. 934-943: Springer. 

[61] T. McGraw, T. Kawai, I. Yassine, and L. Zhu, 
"Visualizing high-order symmetric tensor field 
structure with differential operators," Journal of 
Applied Mathematics, vol. 2011, pp. 327-350, 2011. 

[62] A. A. Bukhgeim and S. G. Kazantsev, "Full 
Reconstruction of a Vector Field from Its 
Attenuated Vectorial Radon Transform," in 
Modelling, Identification and Control, 2003, pp. 
294-298. 

[63] F. Natterer, "Inverting the attenuated vectorial 
Radon transform," Inverse Ill-Posed Problems, vol. 
13, no. 1, pp. 93-101, 2005. 

[64] Q. Huang, "Attenuated vector tomography--An 
approach to image flow vector fields with doppler 
ultrasonic imaging," 2008. 

[65] Q. Huang and G. T. Gullberg, "Attenuation 
corrected tensor tomography-attenuation helps in 
the case of insufficient measurements," in 2007 
IEEE Nuclear Science Symposium Conference 
Record, 2007, vol. 6, pp. 4103-4109: IEEE. 

[66] A. Malecki, "X-ray tensor tomography," 2014. PhD 
thesis, Technical University of München 

[67] J. Vogel et al., "Constrained x-ray tensor 
tomography reconstruction," Optics Express, vol. 
23, no. 12, pp. 15134-15151, 2015. 

[68] B. Brendel, M. von Teuffenbach, P. B. Noël, F. 
Pfeiffer, and T. Koehler, "Penalized maximum 
likelihood reconstruction for x-ray differential 

phase‐contrast tomography," Medical physics, vol. 
43, no. 1, pp. 188-194, 2016. 

[69] W. Tao et al., "Tomography of dark‐field scatter 

including single‐exposure Moiré fringe analysis 

with X‐ray biprism interferometry—A simulation 
study," Medical Physics, vol. 48, no. 10, pp. 6293-
6311, 2021. 

[70] M. Liebi et al., "Small-angle x-ray scattering tensor 
tomography: model of the three-dimensional 
reciprocal-space map, reconstruction algorithm 
and angular sampling requirements," Acta 
Crystallographica Section A: Foundations and 
Advances, vol. 74, no. 1, pp. 12-24, 2018. 

[71] D. Karimi, L. Vasung, C. Jaimes, F. Machado-Rivas, S. 
K. Warfield, and A. Gholipour, "Learning to 
estimate the fiber orientation distribution function 



18 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2022 

 

from diffusion-weighted MRI," NeuroImage, vol. 
239, p. 118316, 2021. 

[72] Y. Masutani, "Recent advances in parameter 
inference for diffusion MRI signal models," 
Magnetic Resonance in Medical Sciences, pp. rev. 
2021-0005, 2021. 

[73] M. Bergamino, E. G. Keeling, V. R. Mishra, A. M. 
Stokes, and R. R. Walsh, "Assessing white matter 
pathology in early-stage Parkinson disease using 
diffusion MRI: a systematic review," Frontiers in 
neurology, p. 314, 2020. 

[74] B. Jeurissen, A. Leemans, J. D. Tournier, D. K. Jones, 
and J. Sijbers, "Investigating the prevalence of 
complex fiber configurations in white matter tissue 
with diffusion magnetic resonance imaging," 
Human Brain Mapping, vol. 34, no. 11, pp. 2747-
2766, 2013. 

[75] A. Barmpoutis, M. S. Hwang, D. Howland, J. R. 
Forder, and B. C. Vemuri, "Regularized positive-
definite fourth order tensor field estimation from 
DW-MRI," NeuroImage, vol. 45, no. 1, pp. S153-
S162, 2009. 

[76] N. Tran, A. Giannakidis, G. T. Gullberg, and Y. Seo, 
"Quantitative analysis of hypertrophic myocardium 
using diffusion tensor magnetic resonance 
imaging," Journal of Medical Imaging, vol. 3, no. 4, 
p. 046001, 2016. 

[77] S. Nielles‐Vallespin, A. Scott, P. Ferreira, Z. 
Khalique, D. Pennell, and D. Firmin, "Cardiac 
diffusion: technique and practical applications," 
Journal of Magnetic Resonance Imaging, vol. 52, no. 
2, pp. 348-368, 2020. 

[78] Z. Khalique, P. F. Ferreira, A. D. Scott, S. Nielles-
Vallespin, D. N. Firmin, and D. J. Pennell, "Diffusion 
tensor cardiovascular magnetic resonance imaging: 
a clinical perspective," JACC: Cardiovascular 
Imaging, vol. 13, no. 5, pp. 1235-1255, 2020. 

[79] S. Paddock et al., "Clinical translation of three-
dimensional scar, diffusion tensor imaging, four-
Dimensional flow, and quantitative perfusion in 
cardiac MRI: A comprehensive review," Frontiers in 
Cardiovascular Medicine, vol. 8, p. 670, 2021. 

[80] V. Y. Panin, G. L. Zeng, M. Defrise, and G. T. Gullberg, 
"Diffusion tensor MR imaging of principal 
directions: a tensor tomography approach," 
Physics in Medicine Biology, vol. 47, no. 15, p. 2737, 
2002. 

[81] E. Özarslan and T. H. Mareci, "Generalized diffusion 
tensor imaging and analytical relationships 
between diffusion tensor imaging and high angular 
resolution diffusion imaging," Magnetic Resonance 
in Medicine, vol. 50, no. 5, pp. 955-965, 2003. 

[82] T. Chung, Applied continuum mechanics. 
Cambridge University Press, 1996. 

[83] A. Kovetz, Electromagnetic Theory. Oxford 
University Press Oxford, 2000. 

[84] S. M. Carroll, "An introduction to general relativity: 
spacetime and geometry," Addison Wesley, vol. 101, 
p. 102, 2004. 

[85] R. Kumar, A. Barmpoutis, A. Banerjee, and B. C. 
Vemuri, "Non-Lambertian reflectance modeling 
and shape recovery of faces using tensor splines," 
IEEE Transactions on Pattern Analysis Machine 
Intelligence, vol. 33, no. 3, pp. 533-567, 2010. 

[86] B. Abbey, S. Y. Zhang, W. Vorster, and A. M. 
Korsunsky, "Reconstruction of axisymmetric strain 
distributions via neutron strain tomography," 
Nuclear Instruments Methods in Physics Research 
Section B, vol. 270, pp. 28-35, 2012. 

[87] D. D. Karov and A. E. Puro, "Tensor tomography of 
stresses in cubic single crystals," Petersburg 
Polytechnical University Journal: Physics and 
Mathematics, vol. 1, no. 1, pp. 24-28, 2015. 

[88] M. Salo and G. Uhlmann, "The attenuated ray 
transform on simple surfaces," Journal of 
Differential Geometry, vol. 88, no. 1, pp. 161-187, 
2011. 

[89] G. P. Paternain, M. Salo, and G. Uhlmann, "Tensor 
tomography: progress and challenges," 2013. 

[90] P. Stefanov, G. Uhlmann, A. Vasy, and H. Zhou, 
"Travel time tomography," Acta Mathematica 
Sinica, English Series, vol. 35, no. 6, pp. 1085-1114, 
2019. 

[91] A. Hilger, I. Manke, N. Kardjilov, M. Osenberg, H. 
Markötter, and J. Banhart, "Tensorial neutron 
tomography of three-dimensional magnetic vector 
fields in bulk materials," Nature Communications, 
vol. 9, no. 1, pp. 1-7, 2018. 

[92] H. Hammer and W. R. Lionheart, "Reconstruction of 
spatially inhomogeneous dielectric tensors 
through optical tomography," Journal of the Optical 
Society of America A, vol. 22, no. 2, pp. 250-255, 
2005. 

[93] D. S. Tuch, V. J. Wedeen, A. M. Dale, J. S. George, 
and J. W. Belliveau, "Conductivity tensor mapping 
of the human brain using diffusion tensor MRI," 
Proceedings of the National Academy of Sciences, 
vol. 98, no. 20, pp. 11697-11701, 2001. 

[94] Z. Hu, K. Ye, M. Bai, Z. Yang, and Q. Lin, "Solving the 
magnetocardiography forward problem in a 
realistic three-dimensional heart-torso model," 
IEEE Access, vol. 9, pp. 107095-107103, 2021. 

[95] D. Pavlovic, S. Pekic, M. Stojanovic, and V. Popovic, 
"Traumatic brain injury: neuropathological, 
neurocognitive and neurobehavioral sequelae," 
Pituitary, vol. 22, no. 3, pp. 270-282, 2019. 

[96] G. T. Gullberg, U. Shrestha, S. J. W. Kim, Y. Seo, and 

M. Fuller, "X‐ray bi‐prism interferometry—A 
design study of proposed novel hardware," 
Medical Physics, vol. 48, no. 10, pp. 6508-6523, 
2021. 

  



 IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022                      19 

  

Author’s version 

Appendix. Tensor field decomposition 

 

It was shown by Sharafutdinov [47], that a smooth symmetric tensor field which vanishes rapidly at infinity can be decomposed in 

a unique way as 𝑡𝑖𝑗 = 𝑡𝑖𝑗
𝑆 (𝑥) +

1

2
(𝜕𝑖𝜙𝑗(𝑥) + 𝜕𝑗𝜙𝑖(𝑥)), where 𝜙(𝑥) is a vector potential that yields a curl free irrotational tensor 

field and 𝑡𝑖𝑗
𝑆 (𝑥) is a symmetric solenoidal tensor field, which is divergence free: ∑ 𝜕𝑖𝑡𝑖𝑗

𝑆 (𝑥)𝑖 = ∑ 𝜕𝑗𝑡𝑖𝑗
𝑆 (𝑥)𝑗 = 0. If we take the Fourier 

transform, we see that ∑ 𝜎𝑖 𝑡̃𝑖𝑗
𝑆 (𝜎)𝑖 = ∑ 𝜎𝑗 𝑡̃𝑖𝑗

𝑆 (𝜎)𝑗 = 0.  

   In our paper we considered a similar decomposition, but explicitly specify the solenoidal component as a curl of a tensor potential 

as is done in the Helmholz vector field decomposition with a vector potential. We consider the following decomposition of a symmetric 

tensor field 𝑇: 

𝑇(𝑥) = 𝑇Ψ
𝑆(𝑥) + 𝑇Φ

𝐼 (𝑥) 

 

where the solenoidal component 𝑇𝛹
𝑆(𝑥) is a symmetric tensor and is divergence free and 𝑇𝛷

𝐼 (𝑥) is a curl free symmetric tensor. We 

write the solenoidal component as 𝑇𝛹
𝑆(𝑥) = 𝛻 × 𝛹(𝑥) , where  

 

𝛹(𝑥) = [

𝛹𝑥𝑥 𝛹𝑥𝑦 𝛹𝑥𝑧

𝛹𝑦𝑥 𝛹𝑦𝑦 𝛹𝑦𝑧

𝛹𝑧𝑥 𝛹𝑧𝑦 𝛹𝑧𝑧

] (𝑥) .  

 

A correct interpretation of the curl of a second rank tensor is the vector curl operation applied to each column of  Ψ, whereas the 

formal definition of the curl of a second rank tensor is [37, 61] 

 

𝛻 × 𝛹(𝑥) =

[
 
 
 
 
𝜕𝛹𝑧𝑥

𝜕𝑦
−

𝜕𝛹𝑦𝑥

𝜕𝑧
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−

𝜕𝛹𝑦𝑦

𝜕𝑧

𝜕𝛹𝑧𝑧

𝜕𝑦
−

𝜕𝛹𝑦𝑧

𝜕𝑧

𝜕𝛹𝑥𝑥

𝜕𝑧
−

𝜕𝛹𝑧𝑥

𝜕𝑥

𝜕𝛹𝑥𝑦

𝜕𝑧
−

𝜕𝛹𝑧𝑦

𝜕𝑥

𝜕𝛹𝑥𝑧

𝜕𝑧
−

𝜕𝛹𝑧𝑧

𝜕𝑥
𝜕𝛹𝑦𝑥

𝜕𝑥
−

𝜕𝛹𝑥𝑥

𝜕𝑦

𝜕𝛹𝑦𝑦

𝜕𝑥
−

𝜕𝛹𝑥𝑦

𝜕𝑦

𝜕𝛹𝑦𝑧

𝜕𝑥
−

𝜕𝛹𝑥𝑧

𝜕𝑦 ]
 
 
 
 

(𝑥) , 

with elements defined by 

𝑡𝑘𝑙 = ∑∑𝛻𝑖Ψ𝑗𝑙𝜖𝑖𝑗𝑘

3

𝑗=1

3

𝑖=1

   , 

 

where 𝜀𝑖𝑗𝑘 is the permutation tensor (Levi-Civita symbols): 

 

                                      𝜀𝑖𝑗𝑘 = {
+1 (𝑖, 𝑗, 𝑘) is an even permutation of indices
−1 (𝑖, 𝑗, 𝑘) is an odd permutation of indices

0 otherwise    

 

 

Next take the Fourier transform of 𝛻 × 𝛹(𝑥) 

 

𝛻 × 𝛹̃(𝜎) = [

𝜎𝑦Ψ̃𝑧𝑥 − 𝜎𝑧Ψ̃𝑦𝑥 𝜎𝑦Ψ̃𝑧𝑦 − 𝜎𝑧Ψ̃𝑦𝑦 𝜎𝑦Ψ̃𝑧𝑧 − 𝜎𝑧Ψ̃𝑦𝑧

𝜎𝑧Ψ̃𝑥𝑥 − 𝜎𝑥Ψ̃𝑧𝑥 𝜎𝑧Ψ̃𝑥𝑦 − 𝜎𝑥Ψ̃𝑧𝑦 𝜎𝑧Ψ̃𝑥𝑧 − 𝜎𝑥Ψ̃𝑧𝑧

𝜎𝑥Ψ̃𝑦𝑥 − 𝜎𝑦Ψ̃𝑥𝑥 𝜎𝑥Ψ̃𝑦𝑦 − 𝜎𝑦Ψ̃𝑥𝑦 𝜎𝑥Ψ̃𝑦𝑧 − 𝜎𝑦Ψ̃𝑥𝑧

] (𝜎) . 

 

 

Divergence free: ∑ 𝜕𝑖𝑡𝑖𝑗
𝑆 (𝑥)𝑖 = ∑ 𝜕𝑗𝑡𝑖𝑗

𝑆 (𝑥)𝑗 = 0 implies ∑ 𝜎𝑖 𝑡̃𝑖𝑗
𝑆 (𝜎)𝑖 = ∑ 𝜎𝑗 𝑡̃𝑖𝑗

𝑆 (𝜎)𝑗 = 0 thus 

 

 

𝜎𝑥[𝜎𝑦Ψ̃𝑧𝑥 − 𝜎𝑧Ψ̃𝑦𝑥] + 𝜎𝑦[𝜎𝑧Ψ̃𝑥𝑥 − 𝜎𝑥Ψ̃𝑧𝑥] + 𝜎𝑧[𝜎𝑥Ψ̃𝑦𝑥 − 𝜎𝑦Ψ̃𝑥𝑥] = 0 

⇒ [𝜎𝑦𝜎𝑧 − 𝜎𝑦𝜎𝑧]Ψ̃𝑥𝑥 = 0 

𝜎𝑥[𝜎𝑦Ψ̃𝑧𝑦 − 𝜎𝑧Ψ̃𝑦𝑦] + 𝜎𝑦[𝜎𝑧Ψ̃𝑥𝑦 − 𝜎𝑥Ψ̃𝑧𝑦] + 𝜎𝑧[𝜎𝑥Ψ̃𝑦𝑦 − 𝜎𝑦Ψ̃𝑥𝑦] = 0 

⇒ [𝜎𝑧𝜎𝑥 − 𝜎𝑥𝜎𝑧]Ψ̃𝑦𝑦 = 0 

𝜎𝑥[𝜎𝑦Ψ̃𝑧𝑧 − 𝜎𝑧Ψ̃𝑦𝑧] + 𝜎𝑦[𝜎𝑧Ψ̃𝑥𝑧 − 𝜎𝑥Ψ̃𝑧𝑧] + 𝜎𝑧[𝜎𝑥Ψ̃𝑦𝑧 − 𝜎𝑦Ψ̃𝑥𝑧] = 0 

⇒ [𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑥]Ψ̃𝑧𝑧 = 0 
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If we choose Ψ̃𝑥𝑥 = Ψ̃𝑦𝑦 = Ψ̃𝑧𝑧 = 0 and 𝛻 × 𝛹̃(𝜎) is a symmtric tensor then 

 

−𝜎𝑥Ψ̃𝑧𝑥 = 𝜎𝑦Ψ̃𝑧𝑦 ⇒ Ψ̃𝑧𝑥 = −
𝜎𝑦

𝜎𝑥
Ψ̃𝑧𝑦 

𝜎𝑥Ψ̃𝑦𝑥 = −𝜎𝑧Ψ̃𝑦𝑧 ⇒ Ψ̃𝑦𝑥 = −
𝜎𝑧

𝜎𝑥
Ψ̃𝑦𝑧 

−𝜎𝑦Ψ̃𝑥𝑦 = 𝜎𝑧Ψ̃𝑥𝑧 ⇒ Ψ̃𝑥𝑦 = −
𝜎𝑧

𝜎𝑦
Ψ̃𝑥𝑧 

 

Choose Ψ̃𝑥𝑧=−𝜎𝑦𝑋̃1, Ψ̃𝑦𝑧 = 𝜎𝑥𝑋̃2, Ψ̃𝑧𝑦 = −𝜎𝑥𝑋̃3, then 

 

−𝜎𝑥Ψ̃𝑧𝑥 = 𝜎𝑦Ψ̃𝑧𝑦 ⇒ Ψ̃𝑧𝑥 = −
𝜎𝑦

𝜎𝑥
(−𝜎𝑥𝑋̃3) 

𝜎𝑥Ψ̃𝑦𝑥 = −𝜎𝑧Ψ̃𝑦𝑧 ⇒ Ψ̃𝑦𝑥 = −
𝜎𝑧

𝜎𝑥
(𝜎𝑥𝑋̃2) 

−𝜎𝑦Ψ̃𝑥𝑦 = 𝜎𝑧Ψ̃𝑥𝑧 ⇒ Ψ̃𝑥𝑦 = −
𝜎𝑧

𝜎𝑦
(−𝜎𝑦𝑋̃1) 

 

Ψ̃𝑧𝑥 = −
𝜎𝑦

𝜎𝑥
(−𝜎𝑥𝑋̃3) = 𝜎𝑦𝑋̃3 

Ψ̃𝑦𝑥 = −
𝜎𝑧

𝜎𝑥
(−𝜎𝑥𝑋̃2) = −𝜎𝑧𝑋̃2 

Ψ̃𝑥𝑦 = −
𝜎𝑧

𝜎𝑦
(−𝜎𝑦𝑋̃1) = 𝜎𝑧𝑋̃1 

 

With Ψ̃𝑥𝑥 = Ψ̃𝑦𝑦 = Ψ̃𝑧𝑧 = 0 and taking the inverse Fourier transform of the elements Ψ̃𝑎𝑏, we have 

 

 

𝛹(𝑥) =

[
 
 
 
 0

𝜕𝛸1

𝜕𝑧
−

𝜕𝛸1

𝜕𝑦

−
𝜕𝛸2

𝜕𝑧
0

𝜕𝛸2

𝜕𝑥
𝜕𝛸3

𝜕𝑦
−

𝜕𝛸3

𝜕𝑥
0 ]

 
 
 
 

(𝑥) ,  

and 

  

𝑇Ψ
𝑆(𝑥) = 𝛻 × 𝛹(𝑥) =

[
 
 
 
 
 
 
𝜕2𝑋3

𝜕𝑦2
+

𝜕2𝑋2

𝜕𝑧2
−

𝜕2𝑋3

𝜕𝑦𝜕𝑥
−

𝜕2𝑋2

𝜕𝑧𝜕𝑥

−
𝜕2𝑋3

𝜕𝑥𝜕𝑦

𝜕2𝑋1

𝜕𝑧2
+

𝜕2𝑋3

𝜕𝑥2
−

𝜕2𝑋1

𝜕𝑧𝜕𝑦

−
𝜕2𝑋2

𝜕𝑥𝜕𝑧
−

𝜕2𝑋1

𝜕𝑦𝜕𝑧

𝜕2𝑋2

𝜕𝑥2
+

𝜕2𝑋1

𝜕𝑦2 ]
 
 
 
 
 
 

(𝑥) 

 

Note that 𝑇Ψ
𝑆(𝑥) is a symmetric divergence free tensor: ∑ 𝜕𝑖𝑡𝑖𝑗

𝑆 (𝑥)𝑖 = ∑ 𝜕𝑗𝑡𝑖𝑗
𝑆 (𝑥)𝑗 = 0, for example 

 

𝜕

𝜕𝑥
[
𝜕2𝑋3

𝜕𝑦2
+

𝜕2𝑋2

𝜕𝑧2
] −

𝜕

𝜕𝑦

𝜕2𝑋3

𝜕𝑦𝜕𝑥
−

𝜕

𝜕𝑧

𝜕2𝑋2

𝜕𝑧𝜕𝑥
=

𝜕3𝑋3

𝜕𝑥𝜕𝑦2
+

𝜕3𝑋2

𝜕𝑥𝜕𝑧2
−

𝜕3𝑋3

𝜕𝑦2𝜕𝑥
−

𝜕3𝑋2

𝜕𝑧2𝜕𝑥
= 0 . 

 

 


